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Reading instructions

This lecture and its figures are based on and adapted from:
• [2, Chapter 5]

It should be regarded as a complement to the assigned reading in the
chapter above.
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Network layer functions

Forwarding — Data plane
Move packets from an incoming port to the appropriate outgoing port

Routing — Control plane
• Determines the path a packet must take from source to destination.
• Two approaches

• per-router
• centralized controller
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Traditional routing — Per-router

Figure: [2, Figure 4.2]
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SDN — Centralized controller

Figure: [2, Figure 4.3]
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Routing table

Incoming packet
Dest IP: 10.1.2.42

Router

lookup by prefix

Prefix Mask Next Hop

0.0.0.0 / 0 Default GW

10.0.0.0 / 8 NHop-A

10.1.0.0 / 16 NHop-B

10.1.2.0 / 24 NHop-C

10.1.2.128 / 25 NHop-D

192.168.0.0 / 16 NHop-E

Forward to: NHop-C

install/forward
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Manually added routes
Advantages
• Low overhead
• Simple
• Suitable in simple stable topologies

Disadvantages
• Necessary to have a complete picture of the network.
• Slow to adapt the network changes.
• Not manageable in large complicated networks.
• Easy to misconfigure
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Dynamically added routes
Advantages
• Quick to adapt to topology changes
• Handles complex networks

Disadvantages
• Resource-intensive
• Overhead
• Can be complex to set up
• Easy to misconfigure
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Interior Gateway Protocols

• Dynamic routing protocol run within a routing domain.
• There are two main types of IGP

• Link state
• Distance Vector

• Which protocol to use depends on:
1. Currently running protocols
2. Needs
3. Hardware
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How do we find the best path?
Driving by road signs

Figure: Navigating by road signs, similar to distance vector routing
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How do we find the best path?

Driving by GPS

Figure: Navigating by GPS, similar to link state routing
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Link state algorithms

• All routers have a complete picture of the network in its routing domain.
• Common mechanisms to achieve this is link-flooding.
• Allows each router to run its own SPF-algorithm to find the best path to

a network prefix.
• Most commonly used link state protocol is OSPF and IS-IS.
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Dijkstra’s Algorithm

• The cost between all routers is known, and all link costs are
non-negative.
• Calculates the lowest cost to reach each destination starting from a

given source router.
• Iterative algorithm: after k iterations, the lowest cost to k destinations is

known.
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Dijkstra’s Algorithm

• c(x , y) — the cost from x to y (default =∞ if no direct link exists)
• D(v) — the current known minimum cost to reach router v
• p(v) — the predecessor router along the shortest path to v
• N ′ — the set of routers for which the shortest path from the source is

known
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Dijkstra’s Algorithm

I n i t i a l i z a t i o n ( source r o u t e r x ) :
N ’ = { x }
For a l l r ou te r s v :

i f v i s ad jacent to x :
D( v ) = c ( x , v )

e lse :
D( v ) = ∞

Loop u n t i l a l l r ou te r s are added to N ’ :
Find w not in N ’ such t h a t D(w) i s a minimum
Add w to N ’
Update D( v ) for a l l v ad jacent to w and not in N ’ :

D( v ) = min (D( v ) , D(w) + c (w, v ) )

Listing 1: Dijkstra’s algorithm (source router x) [2]
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Example: Dijkstra’s Algorithm

D(v) D(w) D(x) D(y) D(z)
Step N′ p(v) p(w) p(x) p(y) p(z)

0 u (source) 7,u 3,u 5,u ∞ ∞

1 uw 6,w 5,u 11,w ∞

2 uwx 6,w 11,w 14,x

3 uwxv 10,v 14,x

4 uwxvy 12,y

5 uwxvyz

Figure: Dijkstra topology example (source
router u) [2]
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Drawbacks
• Each router must maintain an up-to-date map of the entire network

topology.
• Requires significant memory and processing resources.
• Higher computational complexity due to shortest-path calculations (e.g.,

Dijkstra’s algorithm).
• Periodic flooding of link-state information increases control traffic.
• Susceptible to temporary inconsistencies during topology changes.
• Synchronization or flooding errors can lead to incorrect routing

information.
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Distance Vector Algorithms

• Every router informs their neighbours on which network prefixes they
can reach, and to what cost
• Hence distance vector

• Direction: Which port to send packet to.
• Magnitude: Cost to reach destination.

• Common DV protocols are RIP and EIGRP.
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Bellman-Ford

dx(y) := minimum cost of the path between x and y
dx(y) = minv{c(x , v) + dv (y)}

• minv checks all neighbors v of x
• c(x , v) is the cost between x and v
• dv (y) is the cost between v and y

Department of Computer and Electrical Engineering
Mid Sweden University



Example: Bellman-Ford

du(z) = min{c(u, v) + dv (z),
c(u, x) + dx(z),
c(u,w) + dw (z)}

= min{2 + 5, 1 + 3, 5 + 3} = 4

Figure: Bellman-Ford example [2]
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Bellman-Ford

Dx(y) := estimated minimum cost from x to y

• Node x maintains a list Dx = [Dx(y) : y ∈ N]
• This means that:

• x must know the cost to all its neighbors v : c(x , v)
• For each neighbor v , x must know its distance vector

Dv = [Dv (y) : y ∈ N]
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Bellman-Ford

• All routers periodically exchange their distance vectors
• Each time a router receives a new distance vector, it updates its routing

table
• For each router y ∈ N:

Dx(y)← minv{c(x , v) + Dv (y)}
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Drawbacks

• Sensitive to routing loops.
• Does not know the overall network topology.
• Slow convergence after topology changes.
• Can suffer from the count-to-infinity problem.
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Convergence in DV

Figure: Convergence in DV [1]
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Routing Loop Example in Distance Vector Routing

• Link between A and X fails.
• A updates its table: DA(X) = ∞.
• B and C have not yet learned about the failure.
• B tells A it can reach X via C (and vice versa).
• A updates its table based on outdated info,

creating a routing loop.
• A and B forward packets to each other for X

forming a routing loop.

A B

C

X

link fails

Figure: Routing loop after link failure.
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Routing at Scale

• We don’t have a flat network with identical routers
• There are billions of addresses, it is not reasonable for a router to know

them all.
• Different organizations with different needs, policies, and budget

constraints.
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Autonomous Systems
Let’s scale this up!

Figure: [2, Figure 5.8]
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IGP vs EGP
IGP
• Routing within an Autonomous

system (intra-AS routing)
• Focus on network efficiency
• All routers are trusted
• All packets originate from within.
• Different routing protocols can be

run within an AS (Not to confuse
with that different RP can
communicate with each other)

EGP
• Routing between autonomous

systems (inter-AS routing)
• Externally sourced or destined

packets.
• trust only peering ASes.
• Focus on economy and politics
• Same routing protocol must be

run by all AS.
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Border Gateway Protocol

• “The de facto inter-domain routing protocol”
• Obtain destination network reachability info from neighboring ASes
• Determine routes to other networks based on reachability information

and policy
• Propagate reachability information to all AS-internal routers (iBGP)
• Advertise (to neighboring networks) destination reachability info
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eBGP iBGP

Figure: eBGP, iBGP [2]
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BGP
• two BGP routers (“peers”) exchange BGP messages over semi-permanent TCP

connection
• advertising paths to different destination network prefixes (BGP is a “path vector”

protocol)
• when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c it promises it will

forward datagrams towards X.
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Path Vector
BGP Advertisements
• Network prefix
• Attributes (13 attributes)

• AS_PATH
• NEXT-HOP

• Policy-based routing
• gateway receiving route advertisement uses import policy to

accept/decline path (e.g., never route through AS Y).
• AS policy also determines whether to advertise path to other neighboring

ASes
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BGP Path

• AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a
• Based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all

AS2 routers
• Based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X to AS1

router 1c
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BGP Multi Path

• AS1 gateway router 1c learns path AS2,AS3,X from 2a
• AS1 gateway router 1c learns path AS3,X from 3a
• Based on policy, AS1 gateway router 1c chooses path AS3,X and

advertises path within AS1 via iBGP
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Hot potato routing

• 2d learns (via iBGP) it can route to X via 2a or 2c
• Hot Potato Routing: choose local gateway that has least intra-domain

cost.
• IGP metrics override EGP considerations
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Inter-AS Routing

• An AS owner only wants to route traffic to/from its network.
• A advertises path Aw to B and to C
• B and C chooses not to advertise Aw to each other
• B will inform x about BAw
• C will inform x,y about CAw
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Summary Intra- Inter-AS routing

• Policy
• Inter-AS: AS owner wants control over how and what traffic is routed
• Intra-AS: No issue since all data is its own.

• Scale
• Hierarchical routing saves table sizes

• Performance
• Intra-AS: Focuses on performance
• Inter-AS: Policy is more important than performance
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