Dynamic Routing Protocols

Network Technology 1 – Routing protocol and concepts

Lennart Franked

email:lennart.franked@miun.se Tel:060-148683

Information Technology and Media / Information- and Communication Systems (ITM/ICS)
Mid Sweden University

04/03-2013

Chapter 3 - Introduction to Dynamic Routing Protocols

The role of dynamic routing protocols (Adaptive routing)

- Exchange routing tables between routers,
 - Sends and receives routing messages on its interfaces,
 - allows routers to learn about remote networks
 - advertises topology changes.
- Calculate paths based on routing information retrieved.
- Also known as adaptive routing protocols.

Figure : Dynamic routing updates

Pro et contra with dynamic routing protocols

- Advantages
 - Less administrative overhead,
 - automatically adapts to network changes,
 - Independent of network size,
- Disadvantage
 - High overhead (CPU, network link bandwidth),

Figure: Dynamic routing updates

Pro et contra with static routing (non-adaptive routing)

- Advantages
 - Easy to configure,
 - no overhead,
 - security,
- Disadvantages
 - manually maintain network changes,
 - does not scale well in large topologies.

Figure: Static routing

Components of a dynamic routing protocol

- Data Structures: Store routing information
- Algorithm: Process routing information, best-path calculation
- Routing protocol messages: Exchanging routing information

Figure: Dynamic routing updates

Desirable properties in a routing algorithm

There are some properties we would like to see in a routing algorithm

- Correctness,
 - Ensure correct result.
- Stability,
 - quickly reach convergence, and don't change unless needed.
- Fairness
 - distribute available bandwidth fairly (not same as equal)

- Simplicity,
 - High complexity
 - bugs, difficulty troubleshooting
- Robustness,
 - Must be able to withstand the constant changes in the network.
- Efficiency.
 - reduce number of hops,
 - send data over low latency links,
 - maximize throughput

Fairness contra Efficiency

Figure: Efficiency vs fairness

Classifying dynamic routing protocols

Classifying different routing protocols depending on their characteristics:

- Interior Gateway Protocols or Exterior Gateway Protocols.
- Distance vector or Link-state.
- Classful or Classless.

IGP and EGP

IGP and EGP

- Interior Gateway Protocols (IGP)
 - Used for routing within an autonomous system
 - Examples: RIP, OSPF and EIGRP
- Exterior Gateway Protocols (EGP)
 - Used to route between autonomous systems
 - Example: BGPv4

Link State routing protocols

- Creates a complete map of the network
- Updates are sent when needed
- Dijkstra's SPF algorithm
- Example: OSPF

Figure: Link state routing protocol

Link State routing protocols

When is it suitable to use a link state routing protocol?

- Large complex networks
- fast convergence time is desirable.

Distance vector routing protocol

- Routes are advertised as vectors (distance and direction).
 - Distance is a metric such as hop count.
 - Direction is the next hop router or exit interface.
- Not a complete view of the network.
- Advertised generally through periodic updates.
- Bellman-Ford, DUAL.
- Example: RIP, EIGRP

Figure: Distance vector protocol

Distance vector routing protocol

When is it suitable to use a distance vector routing protocol?

- Flat network topology.
- Hub and spoke networks.
- Convergence time is not a problem.

Classful and Classless routing

Whether or not the routing protocol includes the subnet mask in its routing updates.

- Classful routing protocols:
 - Do not include the subnet mask.
- Classless routing protocols:
 - Includes the subnet mask.

Multiple routing protocols

- Multiple routing protocols can be in place in a network.
- A router needs a way to know which advertised route it should place in the routing table.
- Administrative distance is used as a preference value (0-255).

Figure: Multiple routing protocols in an autonomous system

Metric and Administrative distance

- Metric:
 - A value that symbolizes the cost of the route for a certain routing protocol.
 - Based on bandwidth, hop count, latency, reliability et cetera.
- Administrative Distance:
 - Defines the preference of a routing source.
 - The lower the value, the more preferred the route source is.

```
Rotahow ip route

Contput onlited>

Gateway of last resort is not set

D 192.168.1.0/24 [90/2172416] via 192.168.2.1, 00:00124, Serial0/0/0

C 192.168.2.0/24 is directly connected, Serial0/0/0

C 192.168.2.0/24 is directly connected, Serial0/0/0

D 192.168.3.0/24 [192/0/21 connected, Serial0/0/1

B 192.168.3.0/24 [192/0/21 via 192.168.4.1, 00:00108, Derial0/0/1

B 192.168.3.0/24 [192/0/21 via 192.168.4.1, 00:00108, Serial0/0/1

B 192.168.8.0/24 [192/2] via 192.168.4.1, 00:00108, Serial0/0/1
```

```
| Rishow ip rip database | 192.168.3.074 | directly connected, FastEthernet6/0 | 192.168.3.074 | directly connected, Serial8/0/1 | 192.168.6.074 | directly connected, Serial8/0/1 | 192.168.6.074 | directly connected, Serial8/0/1 | directly connected | di
```

Figure : Metric and Administrative distance

Figure : RIP database

Administrative distance - Table

Route source	Default AD
Directly connected	0
Static	1
EIGRP summary route	5
eBGP	20
EIGRP (internal)	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EIGRP (External)	170
iBGP	200
Unknown	255

Table: Default administrative distance

A routing source with an administrative distance of 255 will not be installed in the routing table.

Routing information from other routing sources are still saved on the router.

```
R2#show ip rip database
192.168.3.0/24 directly connected, FastEthernet0/0
192.168.4.0/24 directly connected, Serial0/0/1
192.168.5.0/24
[1] via 192.168.4.1, Serial0/0/1
192.168.6.0/24
[1] via 192.168.4.1, Serial0/0/1
192.168.7.0/24
[1] via 192.168.4.1, Serial0/0/1
192.168.8.0/24
[2] via 192.168.4.1, Serial0/0/1
```

Figure: RIP database

Static routes and administrative distance

Default administrative distance for a static route is always 1.

 Even though we can't see this when configured with an exit interface.

```
R2#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

172.16.0.0/24 is subnetted, 3 subnets

C 172.16.1.0 is directly connected, PastEthernet0/0

C 172.16.2.0 is directly connected, Serial0/0/0

S 172.16.3.0 is directly connected, Serial0/0/0

C 192.168.1.0/24 is directly connected, Serial0/0/1

S 192.168.2.0/24 [1/0] via 192.168.1.1
```

Figure: Routing table with static routes

• show ip route can confirm this.

```
R2#show ip route 172.16.3.0
Routing entry for 172.16.3.0/24
Known via "static", distance 1, metric 0 (connected)
Routing bescriptor Blocks:
* directly connected, via Serial0/0/0
Route metric is 0, traffic share count is 1
```

Figure: Output from show ip route

Floating static routes

- Floating static routes
 - A static route with a higher administrative distance.
 - Used as a fall back route.
 - ip route <destination IP> <destination mask> <Next
 Hop | Exit interface> <distance metric>

Chapter 4 - Distance Vector Routing

Distance Vector Routing Protocols

Recapitulate.

- Routes are advertised as vectors (distance and direction).
 - Distance is a metric such as hop count.
 - Direction is the next hop router or exit interface.
- Not a complete view of the network.
- Advertised generally through periodic updates.
- Bellman-Ford Algorithm.
- Example: RIP, EIGRP

Characteristics

- Periodic updates
- Updates are broadcast
- Entire routing table is sent.

Figure: Periodic updates

Routing algorithm

"An algorithm is an ordered set of unambiguous, executable steps that defines a terminating process" —
Brookshear, Computer Science: An overview, 10th ed.

Purpose of a routing protocol

- An ordered set of clearly defined steps for accomplishing a certain task.
- Purpose of a routing algorithm:
 - Mechanism for sending and receiving routing information.
 - Mechanism for calculating the best paths and installing routes in the routing table.
 - Mechanism for detecting and reacting to topology changes.

Comparing routing protocols

- Convergence time
 - How quickly can all the involved routers get in a state of consistency.
- Scalability
 - How large of a network can the protocol support.
- Classless of Classful
- Resource usage
 - CPU utilization
 - Link bandwidth
 - Memory requirements
- Implementation and Maintenance
 - Knowledge needed to implement and maintain or troubleshoot.

Network discovery

Cold start

Figure: Cold Start

Network discovery

Initial exchange

Routers update routing tables with new information

Figure : Initial Exchange

Network discovery

Exchange of routing information

Figure : Next update

Convergence

Figure : Convergence time

Routing table maintenance

Based on RIP routing protocol.

- Update timer 30 seconds
 - Entire routing table
 - Used to inform of new networks and refresh existing ones.
- Invalid timer 180 seconds
 - Marks route as invalid if it has not been refreshed.
 - Still kept in routing table in case the routes becomes available.
- Flush timer 240 seconds
 - Removes the route from the routing table.
- hold-down timer 180 seconds
 - Will not reinstate a route to this destination during this time.
 - Ensures that the network has been fully converged.

```
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - RIGRP, EX - RIGRP external, O - DSPF, IA - DSPF inter area
      N1 - OSPF NSSA externs1 type 1, N2 - OSPF NSSA externs1 type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, is - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route
Gateway of last resort is not set
     172,16.0.0/24 is subnetted, 3 subnets
       172.16.1.0 [120/1] via 172.16.2.2, 00:00:18, Serial0/0/0
        172.16.2.0 is directly connected, Serial0/0/0
       172.16.3.0 is directly connected, FastEthernet0/0
   192.168.1.0/24 [120/1] via 192.168.3.1, 00:00:27, Serial0/0/1
                                   [120/1] via 172,16,2,2 00:00:18 Serial0/0/0
    192,168,3,0/24 is directly connected, SerialO/0/1
R1#
```

Figure: Show ip route

Figure: Show ip protocols

Routing Updates

- Triggered Updates
 - Sent when topology changes
 - Interface change state
 - Route becomes unreachable
 - New route
- Bounded
 - Non-periodic
 - Triggered
 - Partial
 - Bounded

Routing loops

Figure: routing loops

Count to infinity problem

Routing table metric will increment to ∞

Count to Infinity

Each round of updates continues to increase hop count.

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/0	1
10.4.0.0	S0/0/0	24

Madanasta	luda de la ca	11
Network	Interface	Hop
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0
10.1.0.0	S0/0/0	1
10.4.0.0	\$0/0/1	23

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	S0/0/1	22
10.2.0.0	S0/0/1	1
10.1.0.0	S0/0/1	2

Figure : Count to infinity

Implications

- Link bandwidth
- Unnecessary CPU usage
- Interfere with regular updates
- Interfere with data packets.

Causes for routing loops

- Incorrect static routes
- Route redistribution
- Slow Convergence

Mechanisms preventing routing loops

- Triggered Updates
- TTL
- Metric constriction
- Hold-down timers
- Split Horizon
- Route Poisoning

Metric constriction

10.4.0.0 is unreachable. Hop count is 16.

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/0	1
10.4.0.0	S0/0/0	16

Network	Interface	Нор
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0
10.1.0.0	S0/0/0	1
10.4.0.0	S0/0/1	16

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	S0/0/1	16
10.2.0.0	S0/0/1	1
10.1.0.0	S0/0/1	2

Figure: Maximum metric

Route poisoning

- Set maximum metric directly as a route becomes unreachable.
- Speeds up convergence.

Hold down timers

- During this time no route to that network will be added to the routing table if they have the same metric or worse.
- Ensures full convergence

Figure: Hold down timers

Split Horizon

 Will not advertise a network through the interface which it received the update.

Split Horizon Rule for 10.4.0.0

Figure : Split Horizon

Split Horizon with poison reverse

- Inform neighbours to ignore the route.
- Better than not informing of the route.

Figure : Split Horizon with poison reverse

Questions?