DT113G - Nätverksteknik 2, 7,5 hp

# Network Technology 2 –

#### Lennart Franked

email:lennart.franked@miun.se Tel:060-148683

Informationsteknologi och medier / Informations- och Kommunikationssystem (ITM/IKS)
Mittuniversitetet

15/03-2013

# Background

#### Back in the days

- Coaxial network, one long yellow garden hose.
  - Everyone that were sitting physically together belonged to the same network.
- Introduction to hubs and switches.
  - Made it easier (cheaper) to divide the organisation into multiple LANs
  - K LAN, K switches

## Why separate Local Area Networks?

- Performance,
- limit broadcast traffic,
- Security, physically restrict access to some networks.



Figure 1: physically separated networks

### Will this scale?

- Organisations grow and new offices, buildings, location will be added.
- expensive, difficult to administer by separating the departments in physically different networks.



Figure 2: Expanding organisation

Virtual LAN allows us to separate networks logically instead.



Figure 3: Expanding organisation



Figure 4: Expanding organisation with VLAN

# Different types of VLAN

Different types of VLAN that are defined by type or function.

- Default VLAN
  - The VLAN all ports are members of by default.
  - VLAN1, not possible to modify.
- Black Hole VLAN
  - Dummy VLAN for unused ports.
- Data VLAN
  - User-generated trafficVoice, data
- Management VLAN
- Management VLAN
  - Used to manage network equipment.
- Native VLAN
  - Used for backwards compatibility in trunk-links
  - Only needed if switches that don't support VLANs are present in the network.

#### VLAN identification

#### VLAN ID

- Normal range
  - 1 to 1005
  - 1002 to 1005 reserved for Token Ring and FDDI
  - VLAN 1, 1002-1005 are created by default and cannot be removed.
- Extended range
  - 1006 to 4094
  - Only fully supported in VTPv3.
  - VTPv1 and v2 Switches only support extended range vlan if they are set in transparent mode.

# Assigning VLAN

#### VLAN Port Membership Modes



Figure 5: Assigning VLAN membership

- mls qos Enable QoS for the switch
- mls qos trust cos trust the Class of Service values.
- switchport voice vlan # Set voice VLAN ID
- switchport access vlan # Set data VI AN ID



Figure 6: VLAN tagging within a Cisco phone

### VLANs in a multiswitch network

- VLAN within one switch is simple.
- How about between two switches?



Figure 7: One link per VLAN

- Share a common link between all VLAN
- Need a way to mark which VLAN a frame belongs to.
- Tunneling Inter-switch Link (ISL)
- New ethernet header IEEE 802.1Q



Figure 8: VLAN trunking

#### Inter-switch link

- DA Destination Multicast address.
- Type Type of datalink protocol encapsulated.
- User Priority setting.
- SA MAC source address of the transmitting switch port.
- LEN Length of the encapsulated package.
- SNAP Contains information about the type of frame.
- HSA High Bits of Source Address. Manufacturer of the source Interface. Must be Cisco Systems, Inc.
- VLAN Contains the VLAN ID number.
- BPDU Indicates if the encapsulated package is a BPDU or CDP frame.
- Index Source port Index (Unique ID of the port).
- Reserved Reserved 16 bit field, used for carrying extra information when encapsulating Token Ring and FDDI.
- Encapsulated frame.
- Frame Check Sequence.



Figure 9: VLAN tagging within a Cisco phone

#### IEEE 802.1Q

- How to squeeze in VLAN information in the Ethernet header without having to replace all the Ethernet NIC?
- 1998 IEEE did the unthinkable and changed the Ethernet header.
- Only needed to be supported by the switches and not the end hosts.
- Priority field 3 bit field, allow prioritizing frames.
- Canonical Format Indicator –
   Originally to indicate if MAC address
   are given in big endian or little endian.
- Used to allow forwarding Token Ring traffic
- VLAN ID Contains the VLAN ID number.



Figure 10: IEEE 802.1Q header

# Switchport types

- Access port
  - A switchport that belongs to a single VLAN
- Trunk port
  - A port that supports multiple VLAN

# Dynamic Trunking Protocol (DTP)

- Cisco proprietary protocol
- Sends periodic DTP frames to the neighbouring port.
- Each interface can be in one out of four states
  - Dynamic Auto
  - Dynamic Desirable
  - Trunk
  - Access
- Turn off DTP using the switchport nonegotiate
- To show which mode an interface is in, use the show dtp interface

# Dynamic Trunking Protocol (DTP)

|                   | Dynamic Auto | Dynamic Desirable | Trunk | Access |
|-------------------|--------------|-------------------|-------|--------|
| Dynamic Auto      | Access       | Trunk             | Trunk | Access |
| Dynamic Desirable | Trunk        | Trunk             | Trunk | Access |
| Trunk             | Trunk        | Trunk             | Trunk | -      |
| Access            | Access       | Access            | _     | Access |

#### DTP Switchport Mode Interactions



Figure 11: Trunking modes in DTP

#### Create a VLAN



Figure 12: Creating VLAN

## Verify VLANs and Port Memberships

#### Show VLAN Command

| Cisco IOS CLI Command Syntax                                                                                               |                |  |
|----------------------------------------------------------------------------------------------------------------------------|----------------|--|
| show vlan [brief   id vlan-id   name vlan-name   summary].                                                                 |                |  |
| Display one line for each VLAN with the VLAN name, status, and its ports.                                                  | brief          |  |
| Display information about a single VLAN identified by VLAN ID number. For vlan-id, the range is 1 to 4094.                 | id vlan-id     |  |
| Display information about a single VLAN identified by VLAN name. The VLAN name is an ASCII string from 1 to 32 characters. | name vlan-name |  |
| Display VLAN summary information.                                                                                          | summary        |  |

#### **Show Interfaces Command**

| Cisco IOS CLI Command Syntax                                                                                                           |                     |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| show interfaces [interface-id   vlan vlan-id]   switchport                                                                             |                     |
| Valid interfaces include physical ports (including type, module, and port number) and port channels. The port-channel range is 1 to 6. | interface-id        |
| VLAN identification. The range is 1 to 4094.                                                                                           | <b>vlan</b> vlan-id |
| Display the administrative and operational status of a switching port, including port blocking and port protection settings.           | switchport          |

Figure 13: Verifying VLAN

# Configure switchports

# Configure trunk port

```
Switch(config)#interface fastEthernet 0/1
Switch(config-if)#switchport trunk encapsulation dot1q
Switch(config-if)#switchport mode trunk
Switch(config-if)#switchport trunk native vlan 1
```

#### Configure access port

Switch(config)#interface fastEthernet 0/2 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 2

### VLAN troubleshoot

#### Common Problems with VLANs and Trunks

| Problem                 | Result                                                                | Example                                                                              |
|-------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Native VLAN mismatches  | Pose a security risks and create unintended results.                  | For example one port has defined as VLAN 99, the other defined as VLAN 100.          |
| Trunk mode mismatches   | Causes loss of network connectivity.                                  | For example on port configured as trunk mode "off" and the other as trunk mode "on". |
| VLANs and IP Subnets    | Causes loss of network connectivity.                                  | For example user computers may have been configured with the incorrect IP addresses. |
| Allowed VLANs on Trunks | Causes unexpected traffic or no traffic is being sent over the trunk. | The list of allowed VLANs does not<br>support current VLAN trunking<br>requirements. |

Figure 14: Common problems

#### Introduction to VTP

- To be able to use VLAN across multiple switches, each switch must have the same VLAN information
- Manually configure each switch
- Use some sort of protocol that will fix this for us.



Figure 15: VLAN Trunking Protocol

## Purpose of VTP

- Allows for VLAN configuration consistency across the network.
- Accurate tracking and monitoring of VLANs.
- Dynamic reporting of added VLANs across the network.

## VTP Components

- VTP domain.
- VTP modes.
  - VTP Server.
  - VTP client.
  - VTP transparent.
- VTP pruning
- VTP advertisements.
  - Summary advertisements.
  - Subset advertisements.
  - Request advertisements.



Figure 16: Separating network into VTP domains

#### VTP roles - Server

- VTP server Administers the VTP-domain
  - Stores VI AN information in vlan dat
  - Supports adding, deleting and modifying VLAN.
  - Default VTP mode.



Figure 17: VTP Modes

#### VTP roles - Client

#### VTP Client

- Stores VLAN information in running-config
- Unable to add, delete or modify VLAN.



Figure 18: VTP Modes

#### VTP roles - Transparent

- VTP transparent
  - Forwards VTP advertisements
  - Don't process them.
  - VLANs are local only.



Figure 19: VTP Modes

# VTP Pruning

#### VTP Pruning

- Negotiate which VLANs are accessible per port.
- vtp pruning



Figure 20: VTP pruning

# VTP Advertisement types

- Summary Advertisements
  - Sent every 5 minutes from a VTP server.
  - or when a change have occurred
  - Contains VTP domain name, revision number et cetera.
  - Informs about which VTP revision is the latest.

## VTP Advertisement types

- Subset Advertisements
  - Contains information about the available VLANs
  - Sent from VTP-server when new vlan information has been added.

# VTP Advertisement types

- Request advertisements
  - Sent to a VTP-server
  - sent when the domain name of the switch has been changed,
  - the switch receives a summary advertisement with a higher configuration value or
  - when a subset advertisement is missing.

Questions?