DT113G - Nätverksteknik 2, 7,5 hp

Network Technology 2 -

Lennart Franked

email:lennart.franked@miun.se Tel:060-148683

Informations- och Kommunikationssystem (IKS) Mittuniversitetet

18/03-2014

Wireless Network Types

- WPAN Wireless Personal-Area Network
 - Cover area up to 100 meters.
 - I.e. Bluetooth
- WI AN Wireless Local Area Network
 - Cover area up to 300 meters.
 - I.e. WiFi 802.11a/b/g/n/ac/ad
- WWAN Wireless Wide-Area Network
 - Cover areas up to a couple of kilometres.
 - I.e. 3G, 4G, WIMAX
- Focus of todays lecture is on IEEE 802.11 standards.

Wireless Network Types

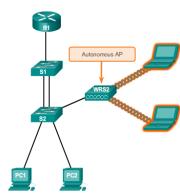
- WPAN Wireless Personal-Area Network
 - Cover area up to 100 meters.
 - I.e. Bluetooth
- WLAN Wireless Local Area Network
 - Cover area up to 300 meters.
 - I.e. WiFi 802.11a/b/g/n/ac/ad
- WWAN Wireless Wide-Area Network
 - Cover areas up to a couple of kilometres.
 - I.e. 3G, 4G, WIMAX
- Focus of todays lecture is on IEEE 802.11 standards.

802.11 Standards

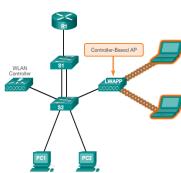
Table 1: 802.11 Standards

IEEE Standard	Maximum Speed	Frequency	Backwards Compatible
802.11	2Mb/s	2.4GHz	_
802.11a	54Mb/s	5GHz	_
802.11b	11Mb/s	2.4GHz	_
802.11g	54Mb/s	2.4GHz	802.11b
802.11n	600Mb/s	2.4GHz and 5GHz	802.11a/b/g
802.11ac	1.3Gb/s	5GHz	802.11a/n
802.11ad	7Gb/s	2.4GHz, 5GHz and 60 GHz	802.11a/b/g/n/ac

Wi-Fi Certifications


- Wi-Fi Alliance ensures compatibility between manufacturers.
- Compatibility insurance includes:
 - IEEE 802.11a/b/g/n/ac/ad
 - IEEE 802.11i WPA2, EAP
 - Wi-Fi Protected Setup (WPS)
 - Wi-Fi Direct
 - Wi-Fi Passpoint
 - Wi-Fi Miracast

Access Point Types


Managed Individually

Access Point Types Cont.

Controller-Based AP

 Managed using a separate WLAN-controller

WiFi Antenna types

- Numerous types of antennas:
 - Omnidirectional 360 degree coverage.
 - Directional Focuses the signal in one direction.
 - Yagi Type of directional antenna, high yield, narrow band, long range.

WiFi Topologies – Ad Hoc

Ad Hoc Mode

Devices interconnect directly without the use an AP or wireless router.

Figure 1: WiFi ad-hoc topology

WiFi Topologies - Tethering

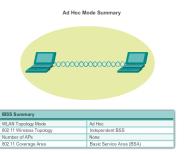


Figure 2: Tethering - Personal WiFi hot spot

Infrastructure Mode

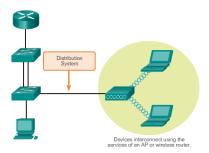
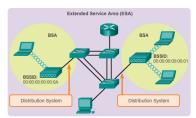


Figure 3: Infrastructure mode

WiFi Topologies - Infrastructure - BSS


Figure 4: Basic Service Set

WiFi Topologies - Infrastructure - ESS

Extended Service Set Summary

ESS Summary			
WLAN Topology Mode	Infrastructure		
802.11 Wireless Topology	Extended Service Set (ESS)		
Number of APs	2 or more		
802.11 Coverage Area	Extended Service Area (ESA)		

Figure 5: Extended Serice Set

Wireless 802.11 Frame

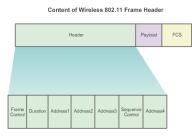


Figure 6: 802.11 Frame Header overview

- Frame Control Identify type of frame
- Duration Indication of how how long the medium is busy before other stations can contend for medium
- Address 1-4 MAC addresses of devices involved in the transfer.
- Sequence Control Contains
 Sequence and Fragment numbers.
- Payload Data
- FCS Frame Check Sequence.

Wireless 802.11 Frame Control

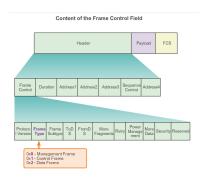


Figure 7: 802.11 Frame Control Header Field Overview

- Protocol Version –
- Frame Type/Frame Subtype Type of frame i.e. management frame, data frame, control frame, followed by specific function of that frame.
 - ToDS/FromDS Direction of frame in respect to Distribution systems.
 - More Fragments Last fragment or more to come.
- Retry Indicates if the frame is resent or not.
- Power Management Active or power save.
- More Data Indicates that more data is to be sent. Used for devices in power-save mode.
- Security Whether or not Security is used

Wireless 802.11 Frame Types

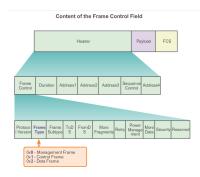


Figure 8: 802.11 Frame Type Header Field Overview

- Management Frame Communication maintenance, finding, authenticating, associating.
- Control Frame RTS, CTS, ACK.
- Data Frame Carrying the payload.

Wireless 802.11 Frame Types

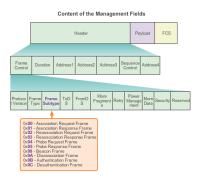


Figure 9: 802.11 Management Frames Overview

- Association request Sent from station to associate itself with an AP.
- Association response Sent from AP to accept or reject association request.
- Reassociation request Sent if station lost connection to AP.
- Reassociation response Sent as a response to reassociation request.
- Probe request Sent from a station when requestion information.
- Probe response Sent from an AP as a response to Probe request.

Wireless 802.11 Frame Types cont.

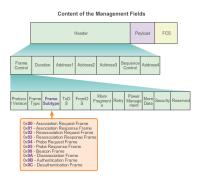


Figure 10: 802.11 Management Frames Overview

- Beacon Sent periodically from AP announcing its presence.
- Disassociation frame Sent from station wanting to terminate connection.
- Authentication frame Used for authentication. Contains ID information.
- Deauthentication Sent from one station to another for terminating connection.

Wireless 802.11 Frame Types

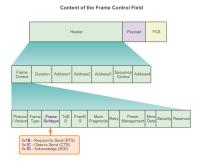


Figure 11: 802.11 Frame Control Type Field Overview

- Request to Send Sent from station that wants to use transmission media.
- Clear to Send Sent from AP as a response to CTS.
- Acknowledgement Acknowledge receiving frame.

These frames are used for the CSMA/CA contention method used by 802.11.

802.11 Control Frames

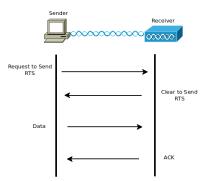
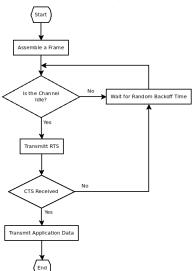



Figure 12: Exchange of 802.11 Control Frames

Wireless 802.11 Associations

Three-Stage Process

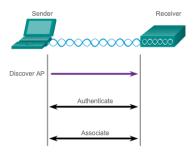


Figure 14: 802.11 AP Association

- For an AP and a station to associate they must agree on association parameters.
 - SSID
 - Password
 - Network mode 802.11
 - a/b/g/n/ac/ad
 - Security Open, WEP, WPA, WPA2
 - Channel

Discovering Access Points

- Passive mode
 - Stations can passively find available networks.
 - AP advertises its presence using beacons
- Active mode
 - Stations must actively search for available AP
 - Stations must know network parameters, such as SSID
 - Probe requests are sent on multiple channels.

Frequency Channel Usage

- Direct Sequence Spread Spectrum (DSSS)
 - Spreads the signal over a larger frequence band making it more resistant to interference.
 - Used by 802.11b
- Frequency-hopping Spread Spectrum (FHSS)
 - · Hopping between frequency channels
 - Allows for more efficient use of channels.
 - Used by legacy 802.11.
- Orthogonal Frequency-Division Multiplexing (OFDM)
 - Divides a channel into multiple subchannels
 - Efficient channel usage
 - Makes it possible to use MIMO.
 - Used in 802.11a/g/n/ac

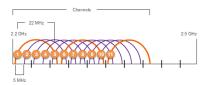


Figure 15: 2.4GHz channels in 802.11b

802.11b supports three non-overlapping channels

802.11g/n (OFDM) Channel Width 20 MHz

Figure 16: 2.4GHz channels in 802.11g/n

802.11g/n supports four non-overlapping channels

Channel bonding - 802.11n

802.11n (OFDM) Channel Width 40 MHz

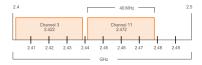


Figure 17: 2.4GHz channels in 802.11n using channel bonding

802.11n supports two non-overlapping channels when using channel bonding

Planning AP Deployment

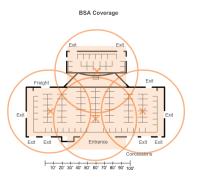


Figure 18 : Planning a WLAN Deployment

Aim for 15% overlap of the BSAs.

Overview - Wireless threats

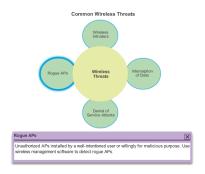


Figure 19: Planning a WLAN Deployment

802.11b supports three non-overlapping channels

DoS Attacks

- Improper configuration
- Disconnect Attack
- CTS Flood
- Medium interference
 - Intentional interference from an attacker
 - Unintentional interference from devices (Phones, Microwaves etc.)

DoS Attacks cont.

Spoofed Disconnect Attack

- An attacker sends a series of Disassociate frames to all stations.
- Will cause the stations to disconnect.
- All stations will send a reassociation frames at the same time, creating a large traffic burst.

CTS-flood

- Misuse of CSMA/CA contention method.
- · Attacker floods the network with CTS-frames
- Causes all stations connected to the network to withhold sending their data.

Rogue Access Point

- Connecting an access point to a network without authorization.
- Allows unsecured access to a network.
- Allows for man-in-the-middle attack.
- Monitor the radio spectrum for rogue access points.

Questions?

