(4

Mittuniversitetet

MID SWEDEN UNIVERSITY

Laboratory assignment:
Paging Algorithms

Daniel Bosk*
paging.tex 187 2016-11-27 23:09:217 jimahl

Contents
(1__Introduction| 1
2 Aim| 1
|3 Reading Instructions| 2
4 Theory] 2
A1 The Simulator Written in Cl .« « « « v v v v v v e e e 2
4.2 The Simulator Written in Python|. 3
6 Workl 5
6 Examination| 5
|[A A Report Template| 6

1 Introduction

The paging algorithm employed in a system can have a huge impact on the per-
formance of the system. In this laboratory assignment your task is to examine
some of the simplest page replacement algorithms using a simulator.

2 Aim

The aim of this laboratory assignment is to further your understanding of the
paging algorithms in question and the problems which have to be solved by this
kind of algorithm. It will also serve to examine the following:

*This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
license. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/3.0/.

1(11)

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

e That you understand the different aspects of problems a page-replacement
algorithm is designed to solve.

e That you can analyze the algorithms to determine when they perform well
and when they perform poorly.

3 Reading Instructions

Before attempting this assignment you should have read Chapter 9 “Virtual-
Memory Management” in [1} 2].
The following tools from the UNIX-like command-line can be of use:

e cat(1),
e wc(1l), specifically options -w and -I; and

e grep(1).

Read the manual pages to get an overview of what these commands do.

4 Theory

The source code for the simulator is included with this assignment. The simula-
tor program-file is called pager, for the C version located in cpager/, or pypager
for the Python version located in pypager/. Both simulators implement the
same algorithms and uses pure demand paging.

4.1 The Simulator Written in C

To use the C version you will have to compile it. A Makefile is provided to make
the process of compilation easier. To compile the program, simply execute the
command-line make pager in your terminal when your current working directory
is cpager/. When run, the simulator program reads a page reference string from
standard input (stdin) and outputs its actions to standard output (stdout).

To switch between algorithms you should first make changes in one of the
source files and then recompile the program. To switch to a different algorithm,
edit the file pager.c and change the argument to the function mem_setalg. The
algorithms that are supported by the simulator program can be found in the
file memalg.h. When done, recompile the program by running make pager in the
terminal again.

You can also change the number of available pages and frames. This is
accomplished by changing the variables npages and nframes also in pager.c.

Running the paging simulator is rather straight-forward. Simply execute
it without arguments and it will wait for the page reference string on stdin.
The page reference string can be space or new-line separated (or both) and
the output will be on the form of one action per line. The page references
can optionally be prefixed with either an r or a w; indicating that the frame
should be read from or written to, respectively. If no prefix is supplied, a read

2 (11)

~N O Ut W N

$ make pager

[lots of output]

$ cat ../fifo-refstr.txt

r0 w3 r2 r4 w4 wl r3 rb

$ cat ../fifo-refstr.txt | wc -w
8

$

Listing 1: An example from the UNIX-like terminal of how to compute the
length of the reference string.

operation is assumed. This means that you could use the reference strings from
[1H3] directly, and these would be interpreted as reading operations.

To illustrate all this, the example in Listing [I] illustrates how to easily count
the number of page references in our reference string. We see that we have 8
page references in our reference string.

4.2 The Simulator Written in Python

The simulator written in Python 3, named pypager, works in exactly the same
manner as the one in C, the only difference is the programming language. Since
Python code is interpreted no compilation is necessary. Note that the simulator
is not backward compatible with Python 2. To run the Python version go to
pypager/ amd run pager.py.

To change the algorithm used and number of frames or pages, edit the file
pager.py. Changing the algorithm used is done by changing the value of the
variable alg. There are lines prepared for this, just switch to any of the other
commented out lines in the code. To change the number of pages or frames,
modify the values of the variables npages or nframes, respectively. Keep in mind
that the first page and frame always have the index zero. With three pages in
total, you will have page 0, 1, and 2.

Listing [2] illustrates the output of the simulator and how to easily count the
number of page faults. Of the 8 page references a total of 6 generated page
faults. You may pipe the input into the simulator as in the given example, use
redirects, or manually input the data.

The referenced pages in the reference string will generally be prefixed with
r for read or w for write, e.g. rO wl. If the prefix is excluded the simulator will
assume a read operation, e.g. 0 1 will be interpreted as rO ri.

3 (11)

O~ O O W N~

PO R NN NNRNNDN — = o b e
0 O TR WK OWOo O Ul W = O W©

[\]
e

$ cat fifo-refstr.txt |

page
page
page
page
page
page
page
page
page
1IPEEE
page
page
IPEEE
page
page
IPEEE
page
page
PEEE
page
page
IPEEE
page
page
IPEEE
page

$ cat fifo-refstr.txt |
fault" |

TN O WRE PR, BEDSDBDNNDMNONWWWWOOO O

generated
allocated
paged in
mapped to
generated
allocated
paged in
mapped to
generated
allocated
paged in
mapped to
generated
allocated
paged in
mapped to
mapped to
generated
allocated
paged in
mapped to
mapped to
generated
paged out
paged in
mapped to

wcC

./pypager/pager .py
page fault
to free frame O

frame O
page fault
to free frame 1

frame 1
page fault
to free frame 2

frame 2
page fault
to free frame 3

frame 3

frame 3

page fault

to free frame 4

frame 4
frame 1
page fault

frame O

./pypager/pager.py | grep "page

-1

Listing 2: An example showing a run of the Python simulator.

4(11)

5 Work

You should start by convincing yourself whether the provided replacement al-
gorithms are correctly implemented. Do this by testing different page reference
strings and do the corresponding computations manually using the descriptions
of the algorithms given by Silberschatz, Galvin, and Gagne [113, ch. 9.4].

Next, you should find one page reference string which adequately shows
that the algorithms perform differently in regards to the number of page faults
generated for that very string. It is important that you analyze these results in
your report. If you can combine this task with the previous, all the better.

Next, you should find one page reference string for each algorithm which
yields a minimum page-fault rate for that particular algorithm. The trivial
page reference string containing only one repeated page number is not allowed,
e.g. 000 ..., all available pages must be referenced at least once. Naturally
you must always include more pages than frames, otherwise the algorithms will
never run.

Similarily you should find a page reference string which yields a maximum
page-fault rate.

Finally, find proof of Belady’s anomaly for the algorithms suffering from it.

The algorithms available are: First-in, first-out (FIFO), Second-chance (SC),
and Enhanced second-chance (ESC).

6 Examination

Hand in a written report (in PDF format) describing your results, the conclu-
sions you have drawn from these as well as why you drew these conclusions. In
essence, you should do the following:

1. Answer whether the algorithms are correctly implemented or not.

2. Show that the algorithms perform differently for a given reference string.
Analyze the results.

3. Provide a page reference string which generates a minimum page-fault rate
for each algorithm.

4. Provide a page reference string which generates a maximum page-fault rate
for each algorithm.

5. Provide evidence of Belady’s anomaly for at least one of the algorithms
suffering from it.

You should, as always, provide convincing arguments for your answers and use
correct references where applicable. Any references made must include page or
section numbers and use the IEEE format.

To make life a bit easier for you a report template is attached, see report.tex.
(This file is also included in Appendix) You may produce your report using
any tool, but it should look the same as the one generated by the template. If
you use it you can simply execute make report.pdf in the terminal to compile
the PDF-file.

5 (11)

DU W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32

References

1]

Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating Sys-
tem Concepts. 9th ed. International Student Version. Hoboken, N.J.: John
Wiley & Sons Inc, 2013.

Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating Sys-
tem Concepts. 9th ed. Hoboken, N.J.: John Wiley & Sons Inc, 2013.

Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating Sys-
tem Concepts. 8th ed. International Student Version. Hoboken, N.J.: John
Wiley & Sons Inc, 2009.

A A Report Template

Here follows the inclusion of a LaTeX report template. This file is also included

in

the sources as report.tex.

%
%
%

$Id: report.tex 1439 2013-11-12 14:29:33Z danbos §
Author: Daniel Bosk <daniel.bosk@miun.se>
Date: 17 Dec 2012

\documentclass [a4paper]{article}
\usepackage [utf8]{inputenc}
\usepackage [swedish,english]{babel} / english default

language

\usepackage [hyphens]{url}
\usepackage{hyperref}
\usepackage{prettyref ,varioref}
\usepackage [numbers , square]{natbib}
\usepackage{color}
\usepackage{listings}
\bibliographystyle{plainnat}

\title{Laboratory Report on Paging Algorithms}
\author{Your Name}
\date{\today}

A\lstset{style=term}

\begin{document}
\maketitle
\begin{abstract}

An abstract summarizing the report in no more than 200
words .

\end{abstract}

\section{Introduction}
\label{sec:Intro}

A

gentle introduction to the subject for the reader \dots

Note that this is only a template. Keep the section headers

and replace all

6 (11)

33
34
35
36
37
38

39

40
41
42
43
44

45

46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64

65
66

67
68

69
70

the content with your own.

\section{Theory}
\label{sec:Theory}
A short descriptions of the algorithms in question \dots
with references to
\citet{Silberschatz20090sc,Silberschatz2013intl,Silberschatz?2
and
possibly other, reliable sources.

\section{Method}

\label{sec:Method}

What simulator and operating system was used. What type of
sources has been

included. In essence, anything related to how the lab was
performed by you.

\section{Results}
\label{sec:Results}
The hard-earned results \dots

E.g. Reference string X generated Y page-faults of Z
possible, see the data in
\prettyref{app:Data}.

Genereally speaking the result chapter should be short,
on-point, and only

include objective data. What does this mean? It means only
your own

calculations, and short-hand results from the simulator
should be presented.

The full input and output from the simulator should be put
inside the appendix

at the end of the report, and simply referenced from this
section. It is also

important that subjective statements or analysis takes
place in this section.

\section{Analysis}

\label{sec:Analysis}

Analyze and try to explain the results. Compare with your
own calculations.

Motivate your results based on theory and assumptions.

Draw conclusions which are then summarized in
\prettyref{sec:Conclusion}.

In this section subjective statements are allowed, but are
best saved for

the conclusions.

7 (11)

0130sc},

71
72| \section{Conclusion}

73| \label{sec:Conclusion}

74| Here you summarize the following:

75| \begin{enumerate}

76 \item Answer whether the algorithms are correctly
implemented or not?

7 \item Show that the algorithms perform differently for a

given

78 reference string. Analyze the results.

79 \item Provide a reference string which generates a
minimum page-fault rate

80 for each algorithm.

81 \item Provide a reference string which generates a
maximum page-fault rate

82 for each algorithm.

83 \item Provide evidence of Belady’s anomaly for at least
one of the

84 algorithms suffering from it.

85| \end{enumerate}

86| Remember that you should never present any new data in your
conclusions.

87| \textbf{In this section you merely draw conclusions based
on your results and your own analysis from the previous
sections}.

88
89
90| \bibliography{literature}
91
92| \appendix
93
94| \section{Data}

95| \label{app:Data}

96| Reference strings and corresponding output are given here.
97| The first FIFO-experiment yielded the following data.

98| The reference string:

99| \1stinputlisting{fifo-refstr.txt}

100| Inputted using the command \dots

101
102| \noindent And the resulting output from the program:
103| \1stinputlisting{fifo-result.txt}

104
105/ \end{document}

Here follows a compiled version of the above code.

8 (11)

Laboratory Report on Paging Algorithms

Your Name

January 4, 2017

Abstract
An abstract summarizing the report in no more than 200 words.

1 Introduction

A gentle introduction to the subject for the reader ...
Note that this is only a template. Keep the section headers and replace all
the content with your own.

2 Theory

A short descriptions of the algorithms in question ... with references to Silber-
schatz et al. [1, 2, 3], and possibly other, reliable sources.

3 Method

What simulator and operating system was used. What type of sources has been
included. In essence, anything related to how the lab was performed by you.

4 Results

The hard-earned results . ..

E.g. Reference string X generated Y page-faults of Z possible, see the data
in A.

Genereally speaking the result chapter should be short, on-point, and only
include objective data. What does this mean? It means only your own calcula-
tions, and short-hand results from the simulator should be presented. The full
input and output from the simulator should be put inside the appendix at the
end of the report, and simply referenced from this section. It is also important
that subjective statements or analysis takes place in this section.

5 Analysis

Analyze and try to explain the results. Compare with your own calculations.
Motivate your results based on theory and assumptions. Draw conclusions which
are then summarized in Section 6. In this section subjective statements are
allowed, but are best saved for the conclusions.

6 Conclusion

Here you summarize the following:
1. Answer whether the algorithms are correctly implemented or not?

2. Show that the algorithms perform differently for a given reference string.
Analyze the results.

3. Provide a reference string which generates a minimum page-fault rate for
each algorithm.

4. Provide a reference string which generates a maximum page-fault rate for
each algorithm.

5. Provide evidence of Belady’s anomaly for at least one of the algorithms
suffering from it.

Remember that you should never present any new data in your conclusions. In
this section you merely draw conclusions based on your results and
your own analysis from the previous sections.

References

[1] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating Sys-
tem Concepts. John Wiley & Sons Inc, Hoboken, N.J., 8 edition, 2009.
International Student Version.

[2] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating Sys-
tem Concepts. John Wiley & Sons Inc, Hoboken, N.J., 9 edition, 2013.
International Student Version.

[3] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating Sys-
tem Concepts. John Wiley & Sons Inc, Hoboken, N.J., 9 edition, 2013.

A Data

Reference strings and corresponding output are given here. The first FIFO-
experiment yielded the following data. The reference string:

r0 w3 r2 r4 w4 wl r3 rd

Inputted using the command ...
And the resulting output from the program:

page 0 generated page fault

page 0 allocated to free frame 0
page 0 paged in

page 0 mapped to frame 0

page 3 generated page fault

page 3 allocated to free frame 1
page 3 paged in

page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page

QL O O O W = = == b s b s DN NN W

mapped to
generated
allocated
paged in

mapped to
generated
allocated
paged in

mapped to
mapped to
generated
allocated
paged in

mapped to
mapped to
generated
paged out
paged in

mapped to

frame 1
page fault

to free frame 2

frame 2
page fault

to free frame 3

frame 3
frame 3
page fault

to free frame 4

frame 4
frame 1
page fault

frame 0

	Introduction
	Aim
	Reading Instructions
	Theory
	The Simulator Written in C
	The Simulator Written in Python

	Work
	Examination
	A Report Template

