
File Systems Virtual File Systems Block Allocation References

Implementing File System

Daniel Bosk1

Department of Information and Communication Systems (ICS),
Mid Sweden University, Sundsvall.

fs.tex 280 2018-12-13 08:52:07Z jimahl

1This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported license. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/.

1

http://creativecommons.org/licenses/by-sa/3.0/

File Systems Virtual File Systems Block Allocation References

Overview

1 File Systems
File-System Structure
Volumes
Kernel Data-Structures
Operations on Files

2 Virtual File Systems
File System Layers

3 Block Allocation and Free Block Algorithms
Directories
Contiguous Allocation
Linked Allocation
Indexed Allocation

2

File Systems Virtual File Systems Block Allocation References

Literature

The lectures gives an overview of Chapter 11 “Implementing
File-Systems” in [SGG13a].

3

File Systems Virtual File Systems Block Allocation References

Overview

1 File Systems
File-System Structure
Volumes
Kernel Data-Structures
Operations on Files

2 Virtual File Systems
File System Layers

3 Block Allocation and Free Block Algorithms
Directories
Contiguous Allocation
Linked Allocation
Indexed Allocation

4

File Systems Virtual File Systems Block Allocation References

File-System Structure

The disk stores data in blocks, normally 512 to 4096 bytes.
FS provides an easy and convenient way of accessing this data.
The first problem is how the FS should look to the user.
The second problem is creating algorithms and data structures
to map the logical file system (what the user sees) onto the
physical secondary storage devices.
We will now focus on the second problem.

5

File Systems Virtual File Systems Block Allocation References

File-System Structure

application programs

file-organization module

basic file system

I/O control

devices

logical file system

Figure: Layered hierarchy of file system structure. Image: [SGG13b].

6

File Systems Virtual File Systems Block Allocation References

File-System Structure
I/O Control

This layer consists of device drivers and interrupt handlers.
This layer transfers information between memory and disk.
From upper layers: fetch block 123.
To lower layers: hardware specific instructions.
The device driver writes specific bit patterns to special
locations in the I/O controller’s memory.

7

File Systems Virtual File Systems Block Allocation References

File-System Structure
Basic File System

The basic file system issues generic commands to the
appropriate device driver; read from block X , write to block Y .
Each physcial block is identified by its numeric disk address;
e.g. drive 1, cylinder 73, track 2, sector 10.
This layer also manages buffers and caches that hold various
directory and data blocks.
The manager allocates a block in the buffer before transfer
can occur. Thus it needs to keep track of free places in the
buffer, and free space when there is none.
The caches are used to speed up system performance, these
must be kept up-to-date to make this work.

8

File Systems Virtual File Systems Block Allocation References

File-System Structure
File-Organisation Module

This part of the FS keeps track of actual files and maps these
to their blocks in the physical device.
The file-organisation module translates logical block addresses
to physical block addresses for the basic file system to transfer.
This layer also keeps track of free physical blocks in the device.

9

File Systems Virtual File Systems Block Allocation References

File-System Structure
Logical File System

This layer manages meta-data information, i.e. everything
except the actual data (file contents).
The logical file system manages the directory structure.
It converts symbolic file names into the IDs the
file-organisation module needs.
It maintains this information in a file-control block (FCB), or
inode.
This layer is also responsible for protection and security, so it
handles access permissions for all files.

10

File Systems Virtual File Systems Block Allocation References

Volumes

Each volume contains a boot control block and a volume
control block.
In UFS the boot control block is called the boot block and the
volume control block is called a superblock.
In NTFS it’s called the partition boot sector. The volume
control block is called the master file table (MFT).
A directory structure is used to organise the files: in UFS,
these include file names and inode numbers; in NTFS this is
stored in the MFT.
Finally, a per file FCB has all information about a file, it
contains a unique identifier to match directory entries. (In
NTFS this is in the MFT.)

11

File Systems Virtual File Systems Block Allocation References

Volumes

Data about the FS is kept in memory via caches.
This data is loaded on mount time.
It’s updated during operation.
It’s discarded on dismount.

12

File Systems Virtual File Systems Block Allocation References

Kernel Data-Structures

The OS keeps an in-memory mount table about each mounted
volume. (Look at mount(8).)
An in-memory directory-structure cache holds the directory
information about recently accessed directories. (Try
time find /some/subdir -print > /dev/null two times in a
row.)
The system-wide open-file table keeps a copy of the FCB of
each open file. (Look at lsof(8).)
The per-process open-file table keeps a pointer to the
appropriate entry in the system-wide open-file table.
Buffers hold file-system blocks when they are being read from
or written to disk.

13

File Systems Virtual File Systems Block Allocation References

Kernel Data-Structures

1 \$ time find ~ -print > /dev/null
2 real 0m47 .535s
3 user 0m0.479s
4 sys 0m1.779s
5 \$

1 \$ time find ~ -print > /dev/null
2 real 0m0.180s
3 user 0m0.080s
4 sys 0m0.100s
5 \$

14

File Systems Virtual File Systems Block Allocation References

Kernel Data-Structures

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Figure: A typical file-control block. Image: [SGG13b].

15

File Systems Virtual File Systems Block Allocation References

Operations on Files

A process which wants to create a new file make a request
from the logical file system.
The logical file system allocates an FCB, either creates a new
or take one of the available in case the FCB:s are created at
FS creation.
The open(2) system call passes a symbolic name to the logical
file system.
This first searches the system-wide open-file table, if found it
points an entry in the process’s open-file table there.
If not found, the directory structure is searched, when found
the FCB is copied into a new entry in the system-wide
open-file table.
We must also track how many processes keep the file open.

16

File Systems Virtual File Systems Block Allocation References

Operations on Files

directory structure

directory structure
open (file name)

kernel memoryuser space

index

(a)

file-control block

secondary storage

data blocks

per-process
open-file table

system-wide
open-file table

read (index)

kernel memoryuser space

(b)

file-control block

secondary storage

Figure: In-memory file-system structures; (a) file open, (b) file read.
Image: [SGG13b].

17

File Systems Virtual File Systems Block Allocation References

Overview

1 File Systems
File-System Structure
Volumes
Kernel Data-Structures
Operations on Files

2 Virtual File Systems
File System Layers

3 Block Allocation and Free Block Algorithms
Directories
Contiguous Allocation
Linked Allocation
Indexed Allocation

18

File Systems Virtual File Systems Block Allocation References

File System Layers

local file system
type 1

disk

local file system
type 2

disk

remote file system
type 1

network

file-system interface

VFS interface

Figure: A schematic view of the virtual file system layer. Image:
[SGG13b].

19

File Systems Virtual File Systems Block Allocation References

File System Layers

The virtual file system (VFS) separates generic operations
from their implementation. I.e. each FS implements the VFS
interface.
The the OS’s FS operations just use the VFS interface, no
need to bother about what’s underneath.
This way we can even implement remote file systems like NFS.

20

File Systems Virtual File Systems Block Allocation References

File System Layers

disk disk

system-calls interface

client server

other types of
file systems

UNIX file
system

UNIX file
system

NFS
client

RPC/XDR

network

RPC/XDR

NFS
server

VFS interface VFS interface

Figure: A schematic of VFS with NFS. Image: [SGG13b].

21

File Systems Virtual File Systems Block Allocation References

Overview

1 File Systems
File-System Structure
Volumes
Kernel Data-Structures
Operations on Files

2 Virtual File Systems
File System Layers

3 Block Allocation and Free Block Algorithms
Directories
Contiguous Allocation
Linked Allocation
Indexed Allocation

22

File Systems Virtual File Systems Block Allocation References

Directories

We need to store and represent our directory structure in some
way.
We have two easy alternatives: linear lists and hash tables.

23

File Systems Virtual File Systems Block Allocation References

Directories

The linear list is simple.
We simply store the file information in a list, from beginning
to end.
To create a file we go through the list to see there’s no
existing file by that name yet, then we create a new entry.
To remove a file we free its allocated entry, e.g. by setting it to
null or replacing it with the last directory entry and reduce the
length of the directory.

24

File Systems Virtual File Systems Block Allocation References

Directories

This is computationally bad, since searching through a list
takes time.
It’s easier if it’s sorted, then the search is faster. Problem is to
keep it sorted.
We can use a hash table instead, hash function computes a
hash value from the symbolic name.
Problem is collisions, if the collisions are few and evenly spread
we can use a linked list for this.

25

File Systems Virtual File Systems Block Allocation References

Contiguous Allocation

directory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

count

f

tr

mail

list

start

0
14
19
28

6

length

2
3
6
4
2

file

count
tr
mail
list
f

Figure: An example of contiguous allocation of file data. Image:
[SGG13b].

26

File Systems Virtual File Systems Block Allocation References

Linked Allocation

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

file
jeep

start
9

directory

end
25

1

1

-1

2

Figure: An example of linked allocation of file data. Image: [SGG13b].

27

File Systems Virtual File Systems Block Allocation References

Linked Allocation

• • •

directory entry

test 217

start blockname
0

217 618

339

618 339

number of disk blocks –1

FAT

Figure: An example of a file-allocation table (FAT). Image: [SGG13b].

28

File Systems Virtual File Systems Block Allocation References

Indexed Allocation

directory

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

9
16

1
10
25
–1
–1
–1

file
jeep

index block
19

19

Figure: An example of indexed allocation. Image: [SGG13b].

29

File Systems Virtual File Systems Block Allocation References

Indexed Allocation

direct blocks

data

data

data

data

data

data

data

data

data

data

•
•
••

•
•

•
•
•

•
•
•

•
•
•

•
•
•

mode

owners (2)

timestamps (3)

size block count

single indirect

double indirect

triple indirect

Figure: An example of the UFS inode. Image: [SGG13b].

30

File Systems Virtual File Systems Block Allocation References

Referenser I

Abraham Silberschatz, Peter Baer Galvin, and
Greg Gagne. Operating System Concepts. 9th ed.
International Student Version. Hoboken, N.J.: John
Wiley & Sons Inc, 2013.

Abraham Silberschatz, Peter Baer Galvin, and
Greg Gagne. Operating System Concepts. 9th ed.
Hoboken, N.J.: John Wiley & Sons Inc, 2013.

31

	File Systems
	File-System Structure
	Volumes
	Kernel Data-Structures
	Operations on Files

	Virtual File Systems
	File System Layers

	Block Allocation and Free Block Algorithms
	Directories
	Contiguous Allocation
	Linked Allocation
	Indexed Allocation

