
Synchronisation Deadlocks References

Synchronisation

Daniel Bosk1

Department of Information and Communication Systems (ICS),
Mid Sweden University, Sundsvall.

sync.tex 2035 2014-10-14 14:14:46Z danbos

1This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported license. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/.

1

http://creativecommons.org/licenses/by-sa/3.0/

Synchronisation Deadlocks References

Overview

1 Synchronisation
Where does the problem arise?
The Critical-Section Problem
Tools to solve the problem

2 Deadlocks
The requirements
Dining Philosophers Problem

2

Synchronisation Deadlocks References

Literature

This lecture covers the second half of the topic process
management. It gives an overview of Chapter 5 “Process
Synchronization” and Chapter 7 “Deadlocks” in [SGG13a; SGG13b],
or Chapter 6 “Synchronization” and Chapter 7 “Deadlocks” in
[SGG09].

3

Synchronisation Deadlocks References

Overview

1 Synchronisation
Where does the problem arise?
The Critical-Section Problem
Tools to solve the problem

2 Deadlocks
The requirements
Dining Philosophers Problem

4

Synchronisation Deadlocks References

Where does the problem arise?

1 i = 0
2 while (True):
3 i = i + 1

5

Synchronisation Deadlocks References

Where does the problem arise?

When we have a preemptive scheduler or multiprocessor
system, multiple processes can try to use the same resource at
the same time.
When the outcome of the execution depends on the order of
execution of the processes we say we have a race condition.

6

Synchronisation Deadlocks References

The Critical-Section Problem

We can sort out the parts of the code of a program which are
suceptible to race conditions, these parts are called the critical
sections.
The code just before the critical section is called the entry
section.
The code in the end of the critical section is the exit section.
The code after the critical section is the remainder section.
The Critical-Section Problem is about the design of a protocol
for several processes to use for cooperation around their
critical sections.

7

Synchronisation Deadlocks References

The Critical-Section Problem

To solve the Critcal-Section Problem an algorithm (protocol) must
fulfull the following requirements:

1 Mutual exclusion. If a process Pi is executing in its critical
section, no other process may do so.

2 Progress. If no process is executing in its critical section and
some processes wish to enter their critical sections, then only
those processes not in their remainder sections can participate
in the decision.

3 Bounded waiting. There exits a bound for how long a process
which has requested to enter its critical section may have to
wait before allowed to enter.

8

Synchronisation Deadlocks References

Tools to solve the problem

Peterson’s solution.
Locks.
Semaphores.

9

Synchronisation Deadlocks References

Tools to solve the problem
Peterson’s Solution

1 while (True):
2 flag[i] = True
3 turn = j
4 while (flag[j] and turn == j):
5 pass
6
7 # critical section
8
9 flag[i] = False

10
11 # remainder section

10

Synchronisation Deadlocks References

Tools to solve the problem

On modern computer architectures we need special hardware
instructions to help us, e.g. TestAndSet or AtomicSwap.

11

Synchronisation Deadlocks References

Tools to solve the problem
TestAndSet

1 # lock = [False]
2 while (True):
3 while (TestAndSet(lock)):
4 pass
5
6 # critical section
7
8 lock = False
9

10 # remainder section

12

Synchronisation Deadlocks References

Tools to solve the problem
AtomicSwap

1 # lock = [False]
2 while (True):
3 key = [True]
4 while (key [0]):
5 AtomicSwap(lock , key))
6
7 # critical section
8
9 lock = False

10
11 # remainder section

13

Synchronisation Deadlocks References

Tools to solve the problem I
Bounded waiting

1 # lock = [False]
2 while (True):
3 waiting[i] = True
4 key = True
5 while (waiting[i] and key [0]):
6 key = TestAndSet(lock))
7
8 waiting[i] = False
9

10 # critical section
11
12 j = (i + 1) \% n
13 while ((j != i) and not waiting[j]):
14 j = (j + 1) \% n
15
16 if (j == i):

14

Synchronisation Deadlocks References

Tools to solve the problem II
Bounded waiting

17 lock = False
18 else:
19 waiting[j] = False
20
21 # remainder section

15

Synchronisation Deadlocks References

Tools to solve the problem
Semaphores

Use two operations wait() and signal().
A binary valued semaphore is called a mutex lock, since it
provides mutual exclusion.
We have also counting semaphores.

16

Synchronisation Deadlocks References

Tools to solve the problem
Semaphores

1 def wait(S):
2 while (S <= 0):
3 pass
4 S -= 1

1 def signal(S):
2 S += 1

17

Synchronisation Deadlocks References

Tools to solve the problem
Semaphores

1 while (True):
2 wait(mutex)
3
4 # critical section
5
6 signal(mutex)
7
8 # remainder section

18

Synchronisation Deadlocks References

Overview

1 Synchronisation
Where does the problem arise?
The Critical-Section Problem
Tools to solve the problem

2 Deadlocks
The requirements
Dining Philosophers Problem

19

Synchronisation Deadlocks References

The requirements

For a deadlock to occur, the following requirements must be
fulfilled:

1 Mutual exclusion.
2 Hold and wait.
3 No preemption.
4 Circular wait.

The converse, to prevent deadlocking we must guarantee at least
one of the above requirements is not fulfilled at any time.

20

Synchronisation Deadlocks References

The requirements

•
•
•

•
•
•

• • •

• • •

Figure: A deadlock. Image: [SGG13b].

21

Synchronisation Deadlocks References

The requirements

R1 R3

R2

R4

P3P2P1

Figure: Another deadlock. Image: [SGG13b].

22

Synchronisation Deadlocks References

The requirements

R2

R1

P3

P4

P2

P1

Figure: A similar situation which is not a deadlock. Image: [SGG13b].

23

Synchronisation Deadlocks References

Dining Philosophers Problem

RICE

Figure: The setup of the Dining Philosophers Problem. Image: [SGG13b].

24

Synchronisation Deadlocks References

Referenser I

Abraham Silberschatz, Peter Baer Galvin, and
Greg Gagne. Operating System Concepts. 8th ed.
International Student Version. Hoboken, N.J.: John
Wiley & Sons Inc, 2009.

Abraham Silberschatz, Peter Baer Galvin, and
Greg Gagne. Operating System Concepts. 9th ed.
International Student Version. Hoboken, N.J.: John
Wiley & Sons Inc, 2013.

Abraham Silberschatz, Peter Baer Galvin, and
Greg Gagne. Operating System Concepts. 9th ed.
Hoboken, N.J.: John Wiley & Sons Inc, 2013.

25

	Synchronisation
	Where does the problem arise?
	The Critical-Section Problem
	Tools to solve the problem

	Deadlocks
	The requirements
	Dining Philosophers Problem

