
Threads Implementation Signals Playing with Threads in Python References

Threads

Daniel Bosk1

Department of Information and Communication Systems (ICS),
Mid Sweden University, Sundsvall.

thread.tex 231 2018-02-05 08:55:44Z jimahl

1This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported license. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/.

1

http://creativecommons.org/licenses/by-sa/3.0/

Threads Implementation Signals Playing with Threads in Python References

Overview

1 Threads
What is a thread?
Benefits
Issues

2 Implementation of threads
Types of threads
The different models

3 Signals
What are signals?

4 Playing with Threads in Python
With race-condition
Without race-condition

2

Threads Implementation Signals Playing with Threads in Python References

Literature

This lecture covers threads. It gives an overview of Chapter 4
“Multithreaded Programming” in [SGG13a]

3

Threads Implementation Signals Playing with Threads in Python References

Overview

1 Threads
What is a thread?
Benefits
Issues

2 Implementation of threads
Types of threads
The different models

3 Signals
What are signals?

4 Playing with Threads in Python
With race-condition
Without race-condition

4

Threads Implementation Signals Playing with Threads in Python References

What is a thread?

The process is what the operating system consider the smallest
entity of execution.
This contains the program code, the variables (data), etc.
A process traditionally has only one thread of execution. Such
a process is called a heavy-weight process.
Now, however, we’ll extend this with more threads of
execution.

5

Threads Implementation Signals Playing with Threads in Python References

What is a thread?

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

Figure: Single-threaded vs. multithreaded process. Image: [SGG13b].

6

Threads Implementation Signals Playing with Threads in Python References

What is a thread?

Multiple threads of execution means we can do many things
simultaneously in a process.
Have to be careful though, you never know who is changing
something in the process at a given time.

7

Threads Implementation Signals Playing with Threads in Python References

Benefits

Responsiveness
Resource sharing
Economy (context switching, process creation)
Scalability

8

Threads Implementation Signals Playing with Threads in Python References

Benefits
Scalability

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…

Figure: A single-core and multi-core execution of four threads. Image:
[SGG13b].

9

Threads Implementation Signals Playing with Threads in Python References

Issues

What happens with fork(2) and exec(2)? The calling thread
only, or all threads?
exec(2) usually replaces all threads.
fork(2) can be different; in some cases only the calling thread
is reasonable to fork, in other cases all of them.
Programming becomes more complex, introducing many
potential bugs.

10

Threads Implementation Signals Playing with Threads in Python References

Overview

1 Threads
What is a thread?
Benefits
Issues

2 Implementation of threads
Types of threads
The different models

3 Signals
What are signals?

4 Playing with Threads in Python
With race-condition
Without race-condition

11

Threads Implementation Signals Playing with Threads in Python References

Types of threads

User thread These execute in user-mode, and are invisible to
the kernel.

Kernel thread These are part of the kernel. They do not
necessarily execute all code in kernel-mode
though.

12

Threads Implementation Signals Playing with Threads in Python References

Types of threads

User threads are mapped to kernel threads.
This mapping can be done in several ways:

One-to-one,
Many-to-one,
Many-to-many.

13

Threads Implementation Signals Playing with Threads in Python References

The different models

user thread

kernel threadk

Figure: The many-to-one model. Image: [SGG13b].

14

Threads Implementation Signals Playing with Threads in Python References

The different models

Can achieve responsiveness, but is not scalable.
Bad in that if one thread blocks, e.g. through a system call,
the whole process blocks, and thus all threads block.
Can be combined with the one-to-one model though, then
threads can be partitioned.

15

Threads Implementation Signals Playing with Threads in Python References

The different models

user thread

kernel threadkkkk

Figure: The one-to-one model. Image: [SGG13b].

16

Threads Implementation Signals Playing with Threads in Python References

The different models

Good in that it’s the OS handling all scheduling.
Bad in that it requires as many kernel-threads as user-threads.

17

Threads Implementation Signals Playing with Threads in Python References

The different models

user thread

kernel threadkkk

Figure: The many-to-many model. Image: [SGG13b].

18

Threads Implementation Signals Playing with Threads in Python References

The different models

The many-to-many model requires a light-weight process
(LWP).
To the process this appears as a processor on which it can
schedule its threads.
I.e. the thread library does the scheduling of its threads, as is
the case in many-to-one also.
The kernel schedules all threads in the one-to-one model.

19

Threads Implementation Signals Playing with Threads in Python References

The different models

LWP

user thread

kernel threadk

lightweight process

Figure: Structure including an LWP. Image: [SGG13b].

20

Threads Implementation Signals Playing with Threads in Python References

The different models

The many-to-many model has the advantage that it has none
of the problems of the other models.
It can have an arbitrarily large amount of threads.
If one thread blocks, i.e. one LWP is blocked, just schedule
another LWP.

21

Threads Implementation Signals Playing with Threads in Python References

The different models

user thread

kernel threadkkk k

Figure: The two-level model. Image: [SGG13b].

22

Threads Implementation Signals Playing with Threads in Python References

Overview

1 Threads
What is a thread?
Benefits
Issues

2 Implementation of threads
Types of threads
The different models

3 Signals
What are signals?

4 Playing with Threads in Python
With race-condition
Without race-condition

23

Threads Implementation Signals Playing with Threads in Python References

What are signals?

A signal is like an interrupt for a process.
The OS sends the process a signal.
The process must stop its current work to handle the signal,
then it may return to previous work.
Examples include “Division by zero”, “Illegal memory access”
and hitting Ctrl+C keyboard combination.

24

Threads Implementation Signals Playing with Threads in Python References

What are signals?

1 Process executes division by zero.
2 CPU generates interrupt, calls OS interrupt handler.
3 OS interrupt handler notes the process currently using the

CPU.
4 OS generates as signal to the process.
5 Process’s signal handler executes.

25

Threads Implementation Signals Playing with Threads in Python References

What are signals?

With a multithreaded process, which thread should handle a
signal from the OS?
This can usually be specified by the programmer.

26

Threads Implementation Signals Playing with Threads in Python References

Overview

1 Threads
What is a thread?
Benefits
Issues

2 Implementation of threads
Types of threads
The different models

3 Signals
What are signals?

4 Playing with Threads in Python
With race-condition
Without race-condition

27

Threads Implementation Signals Playing with Threads in Python References

With race-condition I

1 #!/usr/bin/env python3
2
3 # Author: Daniel Bosk <daniel.bosk@miun.se >
4 # Date: 15 May 2012
5
6 import sys , threading , time
7
8 # function to be run in each separate thread
9 def test(thread_id , delay):

10 for i in range (2):
11 for j in range (5):
12 # critical section
13 # print values of i and j
14 print(str(thread_id) + ":␣i=" + str(i) +

",␣j=" + str(j))
15 # remainder section
16 # sleep for delay seconds

28

Threads Implementation Signals Playing with Threads in Python References

With race-condition II

17 time.sleep(float(delay))
18
19 def main():
20 # default to using two threads. this can be

overridden by passing a number
21 # as argument from the command line.
22 # usage: race.py <nthreads >
23 nthreads = 2
24 if len(sys.argv) > 1:
25 nthreads = int(sys.argv [1])
26
27 threads = []
28 for n in range(nthreads):
29 # create a thread which runs the

test -function above , documentation:
30 #

http :// docs.python.org/library/threading.html?highlight=threading.thread#threading.Thread

29

Threads Implementation Signals Playing with Threads in Python References

With race-condition III

31 t = threading.Thread(target=test ,
32 args=("thread"+str(n), 1+float(n)/10))
33 t.start()
34 threads.append(t)
35
36 print("waiting␣...")
37 # wait for all threads to finish
38 for t in threads:
39 t.join()
40 print("done")
41
42 if __name__ == "__main__":
43 main()

30

Threads Implementation Signals Playing with Threads in Python References

Without race-condition I

1 #!/usr/bin/env python3
2
3 # Author: Daniel Bosk <daniel.bosk@miun.se >
4 # Date: 15 May 2012
5
6 import sys , threading , time
7
8 # function to be run in each separate thread
9 def test(lock , thread_id , delay):

10 for i in range (2):
11 for j in range (5):
12 # entry section , wait for lock
13 lock.acquire ()
14 # critical section
15 # print values of i and j
16 print(str(thread_id) + ":␣i=" + str(i) +

",␣j=" + str(j))

31

Threads Implementation Signals Playing with Threads in Python References

Without race-condition II

17 # exit section , release lock
18 lock.release ()
19 # remainder section
20 # sleep for delay seconds
21 time.sleep(float(delay))
22
23 def main():
24 # prepare a lock for stdout , to synchronise

output
25 stdout = threading.Lock()
26
27 # default to using two threads. this can be

overridden by passing a number
28 # as argument from the command line.
29 # usage: ./ norace.py <nthreads >
30 nthreads = 2
31 if len(sys.argv) > 1:

32

Threads Implementation Signals Playing with Threads in Python References

Without race-condition III

32 nthreads = int(sys.argv [1])
33
34 threads = []
35 for n in range(nthreads):
36 # create a thread which runs the

test -function above , documentation:
37 #

http :// docs.python.org/library/threading.html?highlight=threading.thread#threading.Thread
38 t = threading.Thread(target=test ,
39 args=(stdout , "thread"+str(n),

1+float(n)/10))
40 t.start()
41 threads.append(t)
42
43 print("waiting␣...")
44 # wait for all threads to finish
45 for t in threads:

33

Threads Implementation Signals Playing with Threads in Python References

Without race-condition IV

46 t.join()
47 print("done")
48
49 if __name__ == "__main__":
50 main()

34

Threads Implementation Signals Playing with Threads in Python References

Referenser I

Abraham Silberschatz, Peter Baer Galvin, and
Greg Gagne. Operating System Concepts. 9th ed.
International Student Version. Hoboken, N.J.: John
Wiley & Sons Inc, 2013.

Abraham Silberschatz, Peter Baer Galvin, and
Greg Gagne. Operating System Concepts. 9th ed.
Hoboken, N.J.: John Wiley & Sons Inc, 2013.

35

	Threads
	What is a thread?
	Benefits
	Issues

	Implementation of threads
	Types of threads
	The different models

	Signals
	What are signals?

	Playing with Threads in Python
	With race-condition
	Without race-condition

