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This lecture covers threads. It gives an overview of Chapter 4
“Multithreaded Programming” in [SGG13a]
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What is a thread?

o The process is what the operating system consider the smallest
entity of execution.

o This contains the program code, the variables (data), etc.

o A process traditionally has only one thread of execution. Such
a process is called a heavy-weight process.

o Now, however, we'll extend this with more threads of
execution.
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Figure: Single-threaded vs. multithreaded process. Image: [SGG13b].
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What is a thread?

o Multiple threads of execution means we can do many things
simultaneously in a process.

o Have to be careful though, you never know who is changing
something in the process at a given time.




o Responsiveness

o Resource sharing

o Economy (context switching, process creation)
o Scalability
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Issues

o What happens with fork(2) and exec(2)? The calling thread
only, or all threads?

o exec(2) usually replaces all threads.

o fork(2) can be different; in some cases only the calling thread
is reasonable to fork, in other cases all of them.

o Programming becomes more complex, introducing many
potential bugs.
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Types of threads

User thread These execute in user-mode, and are invisible to
the kernel.

Kernel thread These are part of the kernel. They do not
necessarily execute all code in kernel-mode
though.
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o User threads are mapped to kernel threads.
o This mapping can be done in several ways:
o One-to-one,
o Many-to-one,
o Many-to-many.
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<«—— user thread
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Figure: The many-to-one model. Image: [SGG13b].
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The different models

o Can achieve responsiveness, but is not scalable.

o Bad in that if one thread blocks, e.g. through a system call,
the whole process blocks, and thus all threads block.

o Can be combined with the one-to-one model though, then
threads can be partitioned.

Mittuniversitetet

15



o emamee st famgeTveenhee o R
The different models
3 3 3 <«—— user thread
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Figure: The one-to-one model. Image: [SGG13b].
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o Good in that it's the OS handling all scheduling.

o Bad in that it requires as many kernel-threads as user-threads.
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<«—— user thread

<«——kernel thread

Figure: The many-to-many model. Image: [SGG13b].
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The different models

o The many-to-many model requires a light-weight process
(LWP).

o To the process this appears as a processor on which it can
schedule its threads.

o l.e. the thread library does the scheduling of its threads, as is
the case in many-to-one also.

o The kernel schedules all threads in the one-to-one model.
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The different models
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Figure: Structure including an LWP. Image: [SGG13b]
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The different models

o The many-to-many model has the advantage that it has none
of the problems of the other models.

o It can have an arbitrarily large amount of threads.

o If one thread blocks, i.e. one LWP is blocked, just schedule
another LWP.
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Figure: The two-level model. Image: [SGG13b].
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What are signals?

o A signal is like an interrupt for a process.
o The OS sends the process a signal.

o The process must stop its current work to handle the signal,
then it may return to previous work.

o Examples include “Division by zero”, “lllegal memory access”
and hitting Ctrl4+C keyboard combination.
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What are signals?

@ Process executes division by zero.
@ CPU generates interrupt, calls OS interrupt handler.

@ OS interrupt handler notes the process currently using the
CPU.

@ OS generates as signal to the process.

® Process’s signal handler executes.
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signal from the OS?

o With a multithreaded process, which thread should handle a

o This can usually be specified by the programmer.
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With race-condition |

#!/usr/bin/env python3

# Author: Daniel Bosk <daniel.bosk@miun.se>
# Date: 15 May 2012

import sys, threading, time

O ~NO O WN -

# function to be runm in each separate thread
def test(thread_id, delay):

©

10 for i in range(2):

11 for j in range(5):

12 # critical section

13 # print wvalues of % and j

14 print ( str(thread_id) + ":,i=" + str(i) +
",uj=" o+ ostr(j) )

15 # remainder section

16 # sleep for delay seconds
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17
18

19| def main () :

20

21
22
23
24
25
26
27
28
29

30

time.sleep( float(delay) )

# default to using two threads. thtis can be
overrtdden by passing a number
# as argument from the command line.
# usage: race.py <nthreads>
nthreads = 2
if len(sys.argv) > 1:
nthreads = int( sys.argv[1] )

threads = T[]
for n in range( nthreads ):
# create a thread which runs the
test - function above, documentation:

http://docs.python.org/library/threading. h




With race-condition Il

31 t = threading.Thread( target=test,

32 args=("thread"+str(n), 1+float(n)/10) )
33 t.start ()

34 threads.append( t )

35

36/ print( "waitingg..." )

37 # wait for all threads to finish
38 for t in threads:

39 t.join ()

40 print ( "done" )

41

42|if __name__ == "__main__":
43 main ()
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References

#1/usr/bin/env python3

# Author: Daniel Bosk <daniel.bosk@miun.se>
# Date: 15 May 2012

import sys, threading, time

# function to be Tum in each separate thread
def test(lock, thread_id, delay):
for i in range(2):
for j in range(5):
# entry section, wait for lock
lock.acquire ()
# critical section
# print wvalues of % and j
print ( str(thread_id) + ":,i=" + str(i)
",uj=" + str(j) )
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31

# exit section, release lock
lock.release ()

# remainder section

# sleep for delay seconds
time.sleep( float (delay) )

def main():
# prepare a lock for stdout, to synchronise
output
stdout = threading.Lock()

# default to using two threads. this can be
overridden by passing a number

# as argument from the command line.

# usage: ./mnorace.py <nthreads>

nthreads = 2

if len(sys.argv) > 1:

References
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32
33
34
35
36

37

38
39

40
41
42
43
44
45

nthreads = int( sys.argv[1] )

threads = []
for n in range( nthreads ):
# create a thread which runs the
test - function above, documentation:

http://docs.python.org/library/threading.h
t = threading.Thread( target=test,
args=(stdout, "thread"+str(n),
1+float(n)/10) )
t.start ()
threads.append( t )

print( "waiting,..." )
# wait for all threads to finish
for t in threads:
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46
47
48
49| if
50

t.join ()

print ( "done"

__name__
main ()

)

" __main__":
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