Threads

Daniel Bosk?!

Department of Information and Communication Systems (ICS),
Mid Sweden University, Sundsvall.

thread.tex 231 2018-02-05 08:55:44Z jimahl

Mittuniversitetet

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported license.icb@osiunversire
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/330/.

RN Ge

http://creativecommons.org/licenses/by-sa/3.0/

Overview

@ Threads

o What is a thread?
o Benefits

o Issues

@ Implementation of threads
o Types of threads

o The different models
@ Signals

o What are signals?

@ Playing with Threads in Python
o With race-condition

o Without race-condition

Mittuniversitetet

sssssssssssssssssss

This lecture covers threads. It gives an overview of Chapter 4
“Multithreaded Programming” in [SGG13a]

40> «F»r « =>»

@ Threads
o What is a thread?
o Benefits
o Issues

2) Implementation of threads
Types of threads
The different models

3) Signals
What are signals?

4) Playing with Threads in Python
With race-condition
Without race-condition

«O>» «Fr o«

What is a thread?

o The process is what the operating system consider the smallest
entity of execution.

o This contains the program code, the variables (data), etc.

o A process traditionally has only one thread of execution. Such
a process is called a heavy-weight process.

o Now, however, we'll extend this with more threads of
execution.

G omEEEe & lgkgmTweenrer R
What is a thread?

| code || data || files |

registers

thread —— ?

single-threaded process

| stack |

| code || data || files |
| registers | | registers | |
| stack |

registers |
| stack |

| stack |

Poa—

— thread

multithreaded process
Figure: Single-threaded vs. multithreaded process. Image: [SGG13b].

[m]

[4
Mittuniversitetet
= =

sssssssssssssssssss

What is a thread?

o Multiple threads of execution means we can do many things
simultaneously in a process.

o Have to be careful though, you never know who is changing
something in the process at a given time.

o Responsiveness

o Resource sharing

o Economy (context switching, process creation)
o Scalability

40> «F»r « =>»

<

3

°

Mittuniversitetet

MID SWEDEN UNIVERSITY

RN Ge

single core

T|‘Tz‘T3‘T4‘T1 12‘T3‘T4‘T"
time

‘ core 2 ‘ To

[SGG13b).

time
Figure: A single-core and multi-core execution of four threads. Image:

2,
[4
Mittuniversitetet

«40O)>» «F»r 4

MID SWEDEN UNIVERSITY

R

RN Ge

Issues

o What happens with fork(2) and exec(2)? The calling thread
only, or all threads?

o exec(2) usually replaces all threads.

o fork(2) can be different; in some cases only the calling thread
is reasonable to fork, in other cases all of them.

o Programming becomes more complex, introducing many
potential bugs.

Mittuniversitetet

10

11

1) Threads

What is a thread?
Benefits
[ssues

@ Implementation of threads
o Types of threads

o The different models
3) Signals

What are signals?
With race-condition

4) Playing with Threads in Python

Without race-condition

Types of threads

User thread These execute in user-mode, and are invisible to
the kernel.

Kernel thread These are part of the kernel. They do not
necessarily execute all code in kernel-mode
though.

12

13

o User threads are mapped to kernel threads.
o This mapping can be done in several ways:
o One-to-one,
o Many-to-one,
o Many-to-many.

«40>» «F)»r» « =»

<

o

Mittuniversitetet

MID SWEDEN UNIVERSITY

> =]

RN Ge

<«—— user thread

<«— kernel thread

Figure: The many-to-one model. Image: [SGG13b].

«40>» «F)»r» « =»

<

A
[4
Mittuniversitetet

uuuuuuuuuuuuuuuuuuu

The different models

o Can achieve responsiveness, but is not scalable.

o Bad in that if one thread blocks, e.g. through a system call,
the whole process blocks, and thus all threads block.

o Can be combined with the one-to-one model though, then
threads can be partitioned.

Mittuniversitetet

15

o emamee st famgeTveenhee o R
The different models
3 3 3 <«—— user thread

<—kernel thread
Figure: The one-to-one model. Image: [SGG13b].

16

Mittuniversitetet

sssssssssssssssssss

17

o Good in that it's the OS handling all scheduling.

o Bad in that it requires as many kernel-threads as user-threads.

«40O)>» «F»r 4

<«—— user thread

<«——kernel thread

Figure: The many-to-many model. Image: [SGG13b].

«40>» «F)»r» « =»

<

3

A
[4
Mittuniversitetet

uuuuuuuuuuuuuuuuuuu

The different models

o The many-to-many model requires a light-weight process
(LWP).

o To the process this appears as a processor on which it can
schedule its threads.

o l.e. the thread library does the scheduling of its threads, as is
the case in many-to-one also.

o The kernel schedules all threads in the one-to-one model.

Mittuniversitetet

10

20

ok SRNmaw T fgmgmTeenee o R
The different models

3 <«——user thread

<«— lightweight process
®<— kernel thread

Figure: Structure including an LWP. Image: [SGG13b]

[m]

=

Mittuniversitetet

sssssssssssssssssss

21

The different models

o The many-to-many model has the advantage that it has none
of the problems of the other models.

o It can have an arbitrarily large amount of threads.

o If one thread blocks, i.e. one LWP is blocked, just schedule
another LWP.

Mittuniversitetet

Figure: The two-level model. Image: [SGG13b].

«40>» «F)»r» « =»

<

@ <«— kernel thread

3

<«— user thread

A
[4
Mittuniversitetet

uuuuuuuuuuuuuuuuuuu

wic]

1

Threads
What is a thread?
Benefits

Issues

2) Implementation of threads
Types of threads

The different models
@ Signals

o What are signals?

4) Playing with Threads in Python
With race-condition

Without race-condition

«O>» «Fr o«

What are signals?

o A signal is like an interrupt for a process.
o The OS sends the process a signal.

o The process must stop its current work to handle the signal,
then it may return to previous work.

o Examples include “Division by zero”, “lllegal memory access”
and hitting Ctrl4+C keyboard combination.

24

What are signals?

@ Process executes division by zero.
@ CPU generates interrupt, calls OS interrupt handler.

@ OS interrupt handler notes the process currently using the
CPU.

@ OS generates as signal to the process.

® Process’s signal handler executes.

5

2%

signal from the OS?

o With a multithreaded process, which thread should handle a

o This can usually be specified by the programmer.

7

1) Threads

What is a thread?
Benefits
[ssues

2

Implementation of threads
Types of threads

The different models
3) Signals

What are signals?
o With race-condition

@ Playing with Threads in Python

o Without race-condition

With race-condition |

#!/usr/bin/env python3

Author: Daniel Bosk <daniel.bosk@miun.se>
Date: 15 May 2012

import sys, threading, time

O ~NO O WN -

function to be runm in each separate thread
def test(thread_id, delay):

©

10 for i in range(2):

11 for j in range(5):

12 # critical section

13 # print wvalues of % and j

14 print (str(thread_id) + ":,i=" + str(i) +
",uj=" o+ ostr(j))

15 # remainder section

16 # sleep for delay seconds

78

20

Threads
000000

Implementation Signals Playing with Threads in Python References

00000000000 000 0900000

With race-condition |l

17
18

19| def main () :

20

21
22
23
24
25
26
27
28
29

30

time.sleep(float(delay))

default to using two threads. thtis can be
overrtdden by passing a number
as argument from the command line.
usage: race.py <nthreads>
nthreads = 2
if len(sys.argv) > 1:
nthreads = int(sys.argv[1])

threads = T[]
for n in range(nthreads):
create a thread which runs the
test - function above, documentation:

http://docs.python.org/library/threading. h

With race-condition Il

31 t = threading.Thread(target=test,

32 args=("thread"+str(n), 1+float(n)/10))
33 t.start ()

34 threads.append(t)

35

36/ print("waitingg...")

37 # wait for all threads to finish
38 for t in threads:

39 t.join ()

40 print ("done")

41

42|if __name__ == "__main__":
43 main ()

Mittuniversitetet

20

21

Threads Implementation Signals Playing with Threads in Python
000000 00000000000 000 cooeeee

Without race-condition |

O ~NO O WN -

= e
DO WN = OO

References

#1/usr/bin/env python3

Author: Daniel Bosk <daniel.bosk@miun.se>
Date: 15 May 2012

import sys, threading, time

function to be Tum in each separate thread
def test(lock, thread_id, delay):
for i in range(2):
for j in range(5):
entry section, wait for lock
lock.acquire ()
critical section
print wvalues of % and j
print (str(thread_id) + ":,i=" + str(i)
",uj=" + str(j))

versitetet

32

Threads Implementation Signals Playing with Threads in Python
000000 00000000000 000 cooeeee

Without race-condition I

17
18
19
20
21
22
23
24

25
26
27

28
29
30
31

exit section, release lock
lock.release ()

remainder section

sleep for delay seconds
time.sleep(float (delay))

def main():
prepare a lock for stdout, to synchronise
output
stdout = threading.Lock()

default to using two threads. this can be
overridden by passing a number

as argument from the command line.

usage: ./mnorace.py <nthreads>

nthreads = 2

if len(sys.argv) > 1:

References

33

Threads
000000

Implementation Signals Playing with Threads in Python References

00000000000 000 [elejel 1 1 1}

Without race-condition IlI

32
33
34
35
36

37

38
39

40
41
42
43
44
45

nthreads = int(sys.argv[1])

threads = []
for n in range(nthreads):
create a thread which runs the
test - function above, documentation:

http://docs.python.org/library/threading.h
t = threading.Thread(target=test,
args=(stdout, "thread"+str(n),
1+float(n)/10))
t.start ()
threads.append(t)

print("waiting,...")
wait for all threads to finish
for t in threads:

tml ?

4

46
47
48
49| if
50

t.join ()

print ("done"

__name__
main ()

)

" __main__":

«40O)>» «F»r 4

°

Mittuniversitetet

MID SWEDEN UNIVERSITY

it
v
a
i

» E 9ac

Referenser |

Abraham Silberschatz, Peter Baer Galvin, and
Greg Gagne. Operating System Concepts. 9th ed.
International Student Version. Hoboken, N.J.: John
Wiley & Sons Inc, 2013.

Abraham Silberschatz, Peter Baer Galvin, and
Greg Gagne. Operating System Concepts. 9th ed.
Hoboken, N.J.: John Wiley & Sons Inc, 2013.

Mittuniversitetet

sssssssssssssssssss

35

	Threads
	What is a thread?
	Benefits
	Issues

	Implementation of threads
	Types of threads
	The different models

	Signals
	What are signals?

	Playing with Threads in Python
	With race-condition
	Without race-condition

