
Final exam

DT145G Computer Security

Daniel Bosk
daniel.bosk@miun.se

Phone: 060 - 14 8709

2014-06-03

Instructions
Carefully read the questions before you start answering them. Note the time limit of the exam and plan
your answers accordingly. Only answer the question, do not write about subjects remotely related to the
question.

Write your answers on separate sheets, not on the exam paper. Only write on one side of the sheets.
Start each question on a new sheet. Do not forget to motivate your answers.

Make sure you write your answers clearly, if I cannot read an answer the answer will be awarded no
points – even if the answer is correct. The questions are not sorted by difficulty.

Time 5 hours.

Aids Dictionary.

Maximum points 29

Questions 5

Preliminary grades
The following grading criteria applies: E ≥ 50%, D ≥ 60%, C ≥ 70%, B ≥ 80%, A ≥ 90%.

1 (3)

mailto:daniel.bosk@miun.se

Questions
The questions are given below. They are not given in any particular order.

1. Explain the following terms:

(a)(1p) Confidentiality

(b)(1p) Integrity

(c)(1p) Availability

(d)(1p) Accountability

(e)(1p) Non-Repudiation

2. A user has set the access control list of a file in such a way that only she has access to this file.

(a)(3p) If you would like to read this file you can, explain how you would do and why it works (also
what assumptions you need).

(b)(3p) Suggest how the user must do to guarantee that no one but herself can read this file, also
motivate why this protection works.

3. The University password composition policy is as follows1: The password must be at least eight (8)
characters long, further, the first eight characters must contain two uppercase and two lowercase
letters as well as two numbers.

(a)(3p) Compute the information gained by an attacker from knowing this policy.

(b)(3p) Compare this to the information gained if the policy would have been “the password must be
at least 16 characters long”.

4. The DRM manager in a company claims to have devised a secure DRM for the company’s software
product.

It works as follow: To use the software the user has to enter a authentication code provided with the
software. If valid the software will connect to the servers and use some functionality stored there.

For the connection the software computes a MAC of itself (the executable file) using HMAC-SHA256
and a secret key k shared with the company servers, this is to prevent modification attempts of the
executable file. It then connects to one of these servers, it verifies the server’s certificate to establish
a secure connection, then sends the MAC which is verified by the server, the server verifies and
performs the software’s request if the MAC is valid.

There are several flaws in this DRM scheme.

(a)(3p) Explain what can be done to work around this DRM. (A solution which doesn’t need a copy of
a valid authentication code is of course better than a solution which does.)

(b)(3p) Suggest some improvements of this DRM and motivate what vulnerabilities each improvement
removes. Also motivate whether your improved version is totally secure or not.

5. Look at the C code in Listing 1 on the next page.

(a)(3p) Identify all vulnerabilities in that code and motivate by stating how they can be exploited.

(b)(3p) Suggest improvements to remedy these vulnerabilities, you must motivate why they work.

1It’s slightly more advanced than this, but it’s simplified here for reasons of convenience. Also, the effect might actually
be the same anyway, depending on if users actually use the extension or not.

2 (3)

1 #include <stdio.h>
2
3 int
4 get_some_input(void)
5 {
6 char buffer [128];
7
8 printf("Please enter the key: ");
9 scanf("%s", buffer);

10
11 /* process input */
12
13 return 0;
14 }
15
16 void
17 make_full_name(char *dst , int dstlen ,
18 const char *src , int srclen ,
19 int maxsize)
20 {
21 if (dstlen + srclen + 1 >= maxsize)
22 return -1;
23
24 strncat(dst , " ", 1);
25 return strncat(dst , src , srclen);
26 }
27
28 int
29 main(int argc , char **argv)
30 {
31 char first [256];
32 char last [256];
33
34 printf("Please enter your first name: ");
35 scanf("%s", first);
36 printf("Please enter you last name: ");
37 scanf("%s", last);
38
39 make_full_name(first , strlen(first),
40 last , strlen(last), 256);
41
42 if (get_some_input () < 0)
43 return -1;
44
45 return 0;
46 }

Listing 1: Some vulnerable C code.

3 (3)

