Introduction	Access control structures	Access control models	Comparing Security Attributes
0000	0000	00	000
00000	00	0000	00

Authorisation and Access Control

Daniel Bosk

Department of Information and Communication Systems, Mid Sweden University, SE-85170 Sundsvall.

23rd April 2017

Authorisation and Access Control

MIUN IKS

(日) (四) (三) (三)

Introduction	Access control structures	Access control models	Comparing Security Attributes
00000	00	0000	
		0	

1 Introduction

- Authentication, authorization and access control
- Access operations
- 2 Access control structures
 - Access control matrix
 - Capabilities and ACLs
 - Ownership
- 3 Access control models
 - Identity-based access control
 - Role-based access control
 - Attribute-based access control
 - Protection Rings
- 4 Comparing Security Attributes
 - Partial Orderings
 - Lattices of Security Levels

MIUN IKS

< A

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000	0000	00	000
00000	00	0000	00
		00	

1 Introduction

- Authentication, authorization and access control
- Access operations
- 2 Access control structures
 - Access control matrix
 - Capabilities and ACLs
 - Ownership
- 3 Access control models
 - Identity-based access control
 - Role-based access control
 - Attribute-based access control
 - Protection Rings
- 4 Comparing Security Attributes
 - Partial Orderings
 - Lattices of Security Levels

MIUN IKS

< A

-

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000			
00000	00	0000	
		0	
Authentication, a	uthorization and access control		

- A policy specifies who is allowed to do what.
- Access control enforces operational security policies.

э

A D > A B > A

Introduction A	Access control structures	Access control models	Comparing Security Attributes
		00 0000 00 0	000

Definition

- We have an active entity: a *subject* (representing a *principal*).
- The subject tries to access an object with some access operation.
- To protect this, there is a *reference monitor* granting or denying this access.

MIUN IKS

(日) (同) (三) (三)

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 00000	0000 00 0	00 0000 00 0	000

Definition (Authentication)

- Principals make statements.
- Let *s* be a statement.
- Authentication answers 'Who said s?' by stating a principal.

Definition (Authorization)

Let *o* be an object.

 Authorization answers 'Who is trusted to access o?' by stating a (list of) principal(s).

MIUN IKS

◆□ > ◆□ > ◆豆 > ◆豆 >

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 00000	0000 00 0	00 0000 00 0	000

Definition (Authentication)

- Principals make statements.
- Let *s* be a statement.
- Authentication answers 'Who said s?' by stating a principal.

Definition (Authorization)

- Let o be an object.
- Authorization answers 'Who is trusted to access o?' by stating a (list of) principal(s).

Daniel Bosk

MIUN IKS

(日) (同) (三) (三)

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 00000	0000 00 0	00 0000 00 0	000

Idea: Reference monitor

- The reference monitor requires authentication of principals to be able to authorize the subject it represents.
- By authorization the reference monitor decides whether to grant or deny a subjects request for access to an object.
- For this decision the reference monitor must use the security policy.

MIUN IKS

<ロ> (四) (四) (日) (日) (日)

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 00000	0000 00 0	00 0000 00 0	000

Definition

- The elementary access modes for operations are to *observe* or to *alter* a resource.
- Different access operations requires combinations of access modes.

Definition

An *access right* is a right to perform an access operation.

Privileges are sets of access rights.

MIUN IKS

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 ●0000	0000 00 0	00 0000 00 0	000
A			

Definition

- The elementary access modes for operations are to *observe* or to *alter* a resource.
- Different access operations requires combinations of access modes.

Definition

- An *access right* is a right to perform an access operation.
- Privileges are sets of access rights.

MIUN IKS

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 0000	0000 00 0	00 0000 00 0	000 00
Access operations			

Example (BLP)

- The Bell-LaPadula (BLP) model has four access rights:
 - Execute
 - Read
 - Append (blind write)
 - Write
- These rights requires the two different modes:
 - Execute requires none.
 - Append requires alter.
 - Read requires observe.
 - Write requires observe and alter.

MIUN IKS

(日) (同) (三) (三)

Introduction 0000 00000	Access control structures 0000 00 0	Access control models 00 0000 00 0	Comparing Security Attributes

Access operations

Example (Reference monitor)

- In a multi-user OS, processes uses the open(2) system call to request access.
- The OS makes sure no conflicting accesses are granted.
- Note that some things can be used without a direct request.
- E.g. the user doesn't need read permission to execute a program.

MIUN IKS

(日) (同) (三) (三)

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000	0000	00	000
00000			
		00	

Access operations

Example (UNIX-like systems)

- In UNIX-like systems we have three access operations:
 - Read
 - Write
 - Execute
- These are applied to both files and directories, but differently for each.
- You can read from a file, or list the content of a directory.
- You can write contents to a file, or create or rename files in a directory.
- You can execute the file, or you can search the directory.
- Operations on subdirectories or files are thus handled by access operations to the parent directory.

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 00000	0000 00 0	00 0000 00 0	000
Access operation	-		

Example

Policies for creating and deleting files are expressed by

- access control on the directory in UNIX-like systems, but
- specific create and delete right in Windows.

Example

Policies for defining security settings such as access rights are handled by

- access control on the directory in UNIX-like systems, but
- could be handled by right like grant and revoke.

MIUN IKS

<ロ> (四) (四) (日) (日) (日)

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 00000	0000 00 0	00 0000 00 0	000
Access operation	-		

Example

Policies for creating and deleting files are expressed by

- access control on the directory in UNIX-like systems, but
- specific create and delete right in Windows.

Example

Policies for defining security settings such as access rights are handled by

- access control on the directory in UNIX-like systems, but
- could be handled by right like grant and revoke.

MIUN IKS

(日) (同) (三) (三)

ntroduction	Access control structures	Access control models	Comparing Security Attributes
0000	0000	00	000
00000	00	0000	00

1 Introduction

- Authentication, authorization and access control
- Access operations
- 2 Access control structures
 - Access control matrix
 - Capabilities and ACLs
 - Ownership
- 3 Access control models
 - Identity-based access control
 - Role-based access control
 - Attribute-based access control
 - Protection Rings
- 4 Comparing Security Attributes
 - Partial Orderings
 - Lattices of Security Levels

MIUN IKS

< A

-

Introduction 0000 00000	Access control structures •000 ° °	Access control models 00 0000 00 0	Comparing Security Attributes	
Access control matrix				

- We can adapt two different focuses on the policy.
- The first being, "What is a principal allowed to do?"
- The second, "What may be done with an object?"
- Which one is suitable depends on the application.
- E.g. an OS usually takes the second approach as its purpose is to manage objects.
- E.g. applications like databases might focus on what different users are allowed to do.

< (1) > < (2) > <

Introduction 0000 00000	Access control structures ●000 ○ ○	Access control models 00 0000 00 0	Comparing Security Attributes
Access control mat	rix		

- We can adapt two different focuses on the policy.
- The first being, "What is a principal allowed to do?"
- The second, "What may be done with an object?"
- Which one is suitable depends on the application.
- E.g. an OS usually takes the second approach as its purpose is to manage objects.
- E.g. applications like databases might focus on what different users are allowed to do.

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MIUN IKS

Introduction 0000 00000	Access control structures 0●00 0 0	Access control models 00 0000 00 0	Comparing Security Attributes		
Access control matrix					

- The access control structure is used to store an implemented policy.
- This structure should help to express the policy.
- Access rights for each combination of subject and object should be possible to define.
- The importance of the choice of structure is shown when the system scales up.

(日) (同) (三) (三)

Introduction	Access control structures	Access control models	Comparing Security Attributes
	0000		
00000	00	0000	
		0	
Access control m	atrix		

Definition (Access control matrix)

- *S* be the set of subjects,
- O the set of objects, and
- A the set of access operations.
- Access control matrix: $M = (M_{so})$, where $s \in S$ and $o \in O$.
- Each entry M_{so} ⊆ A specifies the operations subject s may perform on the object o.

MIUN IKS

▲ □ ▶ < □ ▶ </p>

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000		00 0000 00 0	000
Access control m	atrix		

Definition (Access control matrix)

- *S* be the set of subjects,
- O the set of objects, and
- A the set of access operations.
- Access control matrix: $M = (M_{so})$, where $s \in S$ and $o \in O$.
- Each entry M_{so} ⊆ A specifies the operations subject s may perform on the object o.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

B 🕨 🖌 B

Daniel Bosk

MIUN IKS

Introduction	Access control structures	Access control models	Comparing Security Attributes	
	0000			
00000	00	0000	00	
		00		
Access control matrix				

Note

- The access control matrix is an abstract concept.
- It's not very suitable for implementation.

Daniel Bosk Authorisation and Access<u>Control</u> MIUN IKS

・ロト ・四ト ・ヨト ・ヨト

Introduction 0000 00000	Access control structures ○○○○ ●○ ○	Access control models 00 0000 00 0	Comparing Security Attributes
Capabilities and	ACLs		

- Capabilities focuses on the subject.
- Access rights are stored with the subject.
- Capabilities are essentially the rows of the access control matrix.
- Subjects may grant rights to other subjects.
- Maybe even grant right to grant rights.
- How do you know who may access what?
- How do you revoka a capability?

< 17 > <

Introduction 0000 00000	Access control structures ○○○○ ○● ○	Access control models	Comparing Security Attributes
Capabilities and A	CLs	0	

- Focuses on the objects.
- Access rights are stored with the object.
- ACLs are essentially the columns of the access control matrix.
- How do you check access right of a specified subject?

Introduction 0000 00000	Access control structures	Access control models 00 0000 00 0	Comparing Security Attributes
Ownership			

- Who sets the policies?
- The policy is the governing rules of who may access what.
- Who sets or is allowed to change the policy could be assigned to
 - the owner of a resource. This is called *discretionary* access control.
 - a system wide policy decreeing who is allowed access or not. This is called *mandatory* access control.

< A

MIUN IKS

Introduction 0000 00000	Access control structures 0000 00 0	Access control models ⁰⁰ ⁰⁰⁰⁰ ⁰⁰	Comparing Security Attributes
		00 0	

1 Introduction

- Authentication, authorization and access control
- Access operations
- 2 Access control structures
 - Access control matrix
 - Capabilities and ACLs
 - Ownership

3 Access control models

- Identity-based access control
- Role-based access control
- Attribute-based access control
- Protection Rings
- 4 Comparing Security Attributes
 - Partial Orderings
 - Lattices of Security Levels

MIUN IKS

< A

Introduction 0000 00000	Access control structures 0000 00 0	Access control models ●0 ○○○○ ○	Comparing Security Attributes
Identity-based acce	ss control		

- To more easily manage access control for many subjects and objects we need another approach than above.
- The solution is to introduce intermediate levels of complexity.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃→ < ∃→</p>

MIUN IKS

Introduction 0000 00000	Access control structures 0000 00 0	Access control models ○ ○ ○ ○	Comparing Security Attributes 000 00
Identity-based access	s control		

- We might be able to use identity based acces control (IBAC).
- IBAC doesn't scale well.
- Thus we add groups to handle multiple principals at the same time, e.g. a computer security class.

< A

This makes things easier.

MIUN IKS

Introduction 0000 00000	Access control structures 0000 00 0	Access control models ●000 00	Comparing Security Attributes
Role-based access o	control		

- Another approach is to use roles.
- A role is a collection of procedures assigned to users.
- At a first look it reminds a lot about groups.
- However, this is a more high-level way of handling access control.

< A

Introduction	Access control structures	Access control models	Comparing Security Attributes	
00000	<u> </u>	0000		
		00		
Role-based access control				

- The procedures have more complex semantics than just read or write.
- They can only be applied to objects of given data types.
- E.g. transfering funds in a bank.
- RBAC is typically found at the application level.

< A

Introduction 0000 00000	Access control structures 0000 00 0	Access control models ○○ ○○ ○ ○	Comparing Security Attributes 000 00	
Role-based access control				

- We can further have role hierarchies, i.e. relationships between roles.
- E.g. we can have a teacher and a teaching assistant role, where the teacher has all rights of the TA.
- Separation of duties is an important principle in security, i.e. when the same subject isn't allowed to do two related operations.
- There can be static and dynamic policies for separation of duties.

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000	0000	00	000
		0000	
		00	
Role-based acces	s control		

Flat RBAC Users are assigned to roles, permissions are assigned to roles. Hence users get permissions via roles.Hierarchical RBAC Adds support for role hierarchies.Constrained RBAC Adds separation of duties.

MIUN IKS

Introduction	Access control structure
0000	0000
00000	00

Access control models

Comparing Security Attributes

Attribute-based access control

Definition

Policy enforcement point Inspects request and generates authorization request for PDP.

Policy decision point, PDP Evaluates requests against policies. Returns permit or deny.

Policy information point Can be used by PDP to access attribute databases.

00

MIUN IKS

(日) (同) (三) (三)

Introduction	Access control structures
0000	0000
00000	00

Access control models

Comparing Security Attributes

Attribute-based access control

Example (Attributes)

■ Subject attributes, e.g. age, clearance, department, role, ...

00

- Action attributes, e.g. read, delete, write, ...
- Object attributes, e.g. type, owner, classification, location, ...
- Contextual attributes, e.g. time, location, ...

MIUN IKS

イロト イポト イヨト イヨト

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 00000	0000 00 0		
Protection Rings			

- Multics introduced protection rings.
- Low-level version of the high-level BLP.
- These are mainly implemented in hardware and used to protect integrity.
- Access control is based on which rings the subject and object are in.
- E.g. 0 contains kernel, 1 contains OS functionality, 2 contains utilities, and 3 is for user processes.

Introduction	Access control structures	Access control models	Comparing Security Attribute
0000	0000 00 0	00 0000 00	000 00

1 Introduction

- Authentication, authorization and access control
- Access operations
- 2 Access control structures
 - Access control matrix
 - Capabilities and ACLs
 - Ownership
- 3 Access control models
 - Identity-based access control
 - Role-based access control
 - Attribute-based access control
 - Protection Rings
- 4 Comparing Security Attributes
 - Partial Orderings
 - Lattices of Security Levels

MIUN IKS

< 17 ▶

∃ >

Introduction 0000 00000	Access control structures 0000 00 0	Access control models 00 0000 00 0	Comparing Security Attributes •০০ ০০
Partial Orderings			

- Some resources in e.g. the University's Computer Science Department can be accessed by all students, other only by students in a particular class etc.
- Department creates groups "All" and "DT116G", "DT145G" and "DV026G".
- The groups DT116G and All are of course related, DT116G is a subgroup of All and should access everything All can access too.
- However, there is no such relation between DT116G and DT145G.

Introduction	Access control structures	Access control models	Comparing Security Attributes
0000 00000	0000 00 0	00 0000 00 0	

Partial Orderings

- We can use these comparisons for security policy decisions.
- Is the group of the subject requesting access a subgroup of the group allowed access?
- These relationships have a corresponding mathematical construction called partial ordering.

MIUN IKS

Introduction	Access co
0000	0000
00000	00

ccess control structures

Access control models

Comparing Security Attributes

Partial Orderings

Definition

A partial ordering \leq on a set L is a relation on $L \times L$ that is

- reflexive, $\forall a \in L, a \leq a$,
- transitive, $\forall a, b, c \in L, a \leq b \land b \leq c \implies a \leq c$,
- antisymmetric, $\forall a, b \in L, a \leq b \land b \leq a \implies a = b$.

If $a \leq b$, we say that a dominates b.

MIUN IKS

・ロト ・同ト ・ヨト ・ヨト

Introduction	Access control structures
00000	00

Access control models

Comparing Security Attributes

Lattices of Security Levels

Definition

A *lattice* (L, \leq) is a set *L* with a partial ordering \leq such that for every two elements $a, b \in L$ there exists

- an least upper bound $u \in L$: $a \le u, b \le u$ and for all $v \in L$: $(a \le v \land b \le v) \implies u \le v$.
- a greatest lower bound $l \in L$: $l \leq a, l \leq b$ and for all $k \in L$: $(k \leq a \land b \leq b) \implies k \leq l$.

MIUN IKS

(日) (同) (三) (三)

Introduction 0000 00000	Access control structures 0000 00 0	Access control models 00 0000 00 0	Comparing Security Attributes ○○○ ○●	
Lattices of Security Levels				

◆□> ◆□> ◆三> ◆三> 三三 - のへで

Daniel Bosk

Authorisation and Access Control

MIUN IKS