Seminar: FEvaluating and designing
authentication

Daniel Bosk Lennart Franked
19th March 2020

Abstract

A lot of user authentication is based on passwords. We use pass-
word policies to aid users in selecting a secure password. Unfortunately,
research has shown that the common password-polices do not have the
expected effect: users can still choose easy-to-guess passwords and the
policies actually makes guessing easier. It is thus important to scien-
tifically evaluate the actual effects of any user-authentication mechanism,
otherwise our security might be at risk. Here we will focus on exactly
that. More specifically, after this lab you should be able to

e cvaluate the effective security by considering security and usability.

e analyse research results in usable security and apply those relevant

to a given situation.

e design security policies aligned with usability.

To do this, we must be familiar with several topics: usability [And08|
Ch. 2], cryptography [And08, Ch. 5] |Bosl6|, information theory [Uel|
and the scientific method [PB07|. The main contents is some research
papers on password security and usability: ‘Guess again (and again and
again): Measuring password strength by simulating password-cracking al-
gorithms’ [Kel+12|, ‘Of passwords and people: Measuring the effect of
password-composition policies’ [Kom+11], ‘Can long passwords be secure
and usable?’ [Sha+14] and ‘The Password Life Cycle’ [SB18]|; complemen-
ted by a paper on the usability of password managers: ‘A comparative
usability evaluation of traditional password managers’ [KSC10].

1 Introduction

User authentication is present in most systems. There is one security mech-
anism which can be found almost everywhere, which is intended to solve this
problem: passwords. From a usability perspective, passwords generally perform
very poorly. This will, of course, also yield security implications.

Usually, in systems using passwords, the password selection of the users are
governed by some password-composition policy to help (or force) the users to
select strong passwords. Thus, how these policies are designed has great impact
on the resulting passwords the users choose. This impact is not always what is
expected, in fact, sometimes a password policy can result in weaker passwords.

There is no indication that passwords will be replaced any time soon, so if
we must use passwords, we would better use them well. This is the goal of this
assignment.

2 Assignment

The seminar is divided into two seminar sessions. In the first (section 7 we
will evaluate how password-composition policies, both their security and their
usability. In the second (section , we will evaluate how users cope with
passwords and evaluate the usability of password managers.

You will read research papers for these sessions. While reading, write down
your thoughts. Let these questions guide your reading;:

e What are the main results of the research paper?
e How did they conclude them? I.e., what is the research method?

Discuss your thoughts in the working groups before each seminar. The
groups at the seminars will be randomly chosen to maximize exchanges of ideas.

2.1 Password-composition policies

Before the seminar session First you must read the chapter ‘Usability
and Psychology’ |[And08, Ch. 2]. Further, you need a basic understanding of
information theory, for this you are recommended to read ‘Chapter 6: Shannon
entropy’ [Uel|.

Start by estimating the strength of the following two password-composition
policies:

e At least eight characters chosen uniformly randomly. The characters in-
clude lower and upper case, digits and special characters.

e Four words chosen uniformly randomly. Say the words are Swedish, then
there are approximately 125000 words in SAOL (the common dictionary
of Swedish).

e Add to the first policy the requirement of at least one character from each
character group.

How strong are they? Order them according to their strengths.

Read the papers ‘Of passwords and people: Measuring the effect of password-
composition policies’ [Kom+11], ‘Guess again (and again and again): Measuring
password strength by simulating password-cracking algorithms’ [Kel+12], ‘Can
long passwords be secure and usable?’ [Sha+14| and, finally, ‘The Password Life
Cycle’ [SB18|. In these papers the authors studied how password-composition
policies affects the interplay between password security and usability and how
users cope with passwords. Focus on these questions:

e What are the main results of the research paper?
e How did they conclude them? I.e., what is the research method?

After reading, reflect on what you have read, think about the following
questions:

e How do these results compare to your experience of what is used in prac-
tice?

e How are your password strategies compared to those in the papers?

e What would be a good password policy? Why would that be good?

Is it fine to write down passwords or not? It depends?

How to recover from failed states; e.g., forgotten passwords, lost keys?
e What problems do you perceive with authentication of users in general?
e In which situations are passwords suitable and in which are they not?
Crack the following three passwords available in the two files:

https://github.com/OpenSecEd/passwd/releases/download/v1.1/unix-
passwd.txt

and

https://github.com/OpenSecEd/passwd/releases/download/vl.1/win-
pwd.txt

There are instructions for how to get going with this in appendix (You should
work in your groups and make this as fast as possible.)

Discuss the papers and your reflections in the group, how hard are passwords
to crack? For the papers, try to answer: what questions does each paper try to
answer, how do they do this?

During the seminar session During the seminar we will first let the groups
summarize their discussions from before the seminar: the papers, the reflections
and experience from password cracking. (We will take 30 minutes for these
summaries.)

After a short break, each group will design a password policy for one of the
following:

e BankID and Mobile BankID,
e a web-mail account,

e a company login account,

e an encrypted hard-drive;

drawing from both the papers and the discussions. (We allocate 20 minutes for
this.) Finally, every group will present their policy and analysis, then we will
evaluate it together. (We spend the last 20 minutes on this.)

2.2 Password managers and other tools

Before the seminar session Read the paper ‘A comparative usability eval-
uation of traditional password managers’ [KSC10]. In this paper the authors
examines the usability of three password managers and compares them. Discuss
the paper in the group: what questions does the paper answer, how do they do
this?

The group should then evaluate one password manager. Discuss in the group
what interesting factors to look at. There are numerous password managers,
some of the most popular are e.g.:

https://github.com/OpenSecEd/passwd/releases/download/v1.1/unix-passwd.txt
https://github.com/OpenSecEd/passwd/releases/download/v1.1/unix-passwd.txt
https://github.com/OpenSecEd/passwd/releases/download/v1.1/win-pwd.txt
https://github.com/OpenSecEd/passwd/releases/download/v1.1/win-pwd.txt

o KeePass{X,XC},
e LastPass,

e 1Password,

o LessPass,

e BitWarden,

e PassBolt,

o Password Safe.

(Remember, the group only needs to evaluate one.)
Then the group should also evaluate the following authentication mechan-
isms:

e (Mobile) BankID[T]
e WebAuthn? and
o TRMAPF]

After this, think of a few services, tools or devices that you frequently use
and where you must authenticate. Think about the authentication in those
situations: are they properly designed, how would you like to change them and
why?

During the seminar session During the second part of the seminar we will
discuss your experiences, thoughts and suggestions for improvements. We will
do this in groups (randomly chosen to spread the ideas).

First, we will discuss (in groups) your experience of the password managers
and how those relate to the results of the paper [KSC10]. How did you ‘evaluate’
the password manager? What were your conclusions? (The groups will have 30
minutes to discuss this.)

We will summarize the discussions and, particularly, differences between
groups in full class. (We will spend 15 minutes on this.)

After a short break, we will discuss the advantages and disadvantages of
the other authentication mechanisms that you tried. How did you ‘evaluate’
them, what did you do, how was that experience? What service did you want
to improve, how and why? (The groups will have 30 minutes for discussions.)
Then each group will summarize the most important parts of their discussion
in class: any changes of mind, diverging opinions? (We allocate 15 minutes for
this.)

3 Examination

To pass this assignment you need to come prepared and actively participate
throughout the activities.

1URL: https://www.bankid.com.

2URL: https://webauthn.io, Note that you might have to use a smartphone as those have
more hardware support than most laptops.

3URL: https://irma.appl

https://www.bankid.com
https://webauthn.io
https://irma.app

References

[AndO8]

[Bos16]

[Kel+12]

[Kom+11]

[KSC10]

[PB07]

[SB18]

[Sha+14]

[Uel]

Ross J. Anderson. Security Engineering. A guide to building de-
pendable distributed systems. 2nd ed. Indianapolis, IN: Wiley, 2008.
ISBN: 978-0-470-06852-6 (hbk.) URL: http://www.cl.cam.ac.uk/
~rjal4/book.htmll

Daniel Bosk. ‘A high-level overview of cryptography’. Lecture. 2016.
URL: https://github.com/OpenSecEd/appliedcrypto/releases/
tag/v1.1.

Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek,
Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie
Faith Cranor and Julio Lopez. ‘Guess again (and again and again):
Measuring password strength by simulating password-cracking al-
gorithms’. In: Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE. 2012, pp. 523-537. DOI: 10.1109/SP.2012.38.

Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle
L. Mazurek, Lujo Bauer, Christin Nicolas, Lorrie Faith Cranor and
Serge Egelman. ‘Of passwords and people: Measuring the effect of
password-composition policies’. In: CHI. 2011. URL: http://cups.
cs.cmu.edu/rshay/pubs/passwords_and_people2011.pdf.

Ambarish Karole, Nitesh Saxena and Nicolas Christin. ‘A compar-
ative usability evaluation of traditional password managers’. In:
International Conference on Information Security and Cryptology.
Springer. 2010, pp. 233-251.

Sean Peisert and Matt Bishop. ‘How to Design Computer Security
Experiments’. In: Fifth World Conference on Information Secur-
ity FEducation: Proceedings of the IFIP TC11 WG 11.8, WISE 5,
19 to 21 June 2007, United States Military Academy, West Point,
New York, USA. Ed. by Lynn Futcher and Ronald Dodge. Bo-
ston, MA: Springer US, 2007, pp. 141-148. 1SBN: 978-0-387-73269-
5. DOI: [10.1007/978-0-387-73269-5_19. URL: http://web.
cs . ucdavis . edu/ ~peisert / research / Peisert - WISE2007 -
SecurityExperiments.pdf.

Elizabeth Stobert and Robert Biddle. ‘The Password Life Cycle’.
In: ACM Trans. Priv. Secur. 21.3 (Apr. 2018), 13:1-13:32. 1SSN:
2471-2566. DOI: [10.1145/3183341l.

Richard Shay, Saranga Komanduri, Adam L Durity, Phillip Seyoung
Huh, Michelle L. Mazurek, Sean M Segreti, Blase Ur, Lujo Bauer,
Nicolas Christin and Lorrie Faith Cranor. ‘Can long passwords
be secure and usable?” In: Proceedings of the 32nd annual ACM
conference on Human factors in computing systems. ACM. 2014,
pp- 2927-2936. URL: http://lorrie.cranor.org/pubs/longpass~
chi2014.pdf.

Daniel Ueltschi. ‘Chapter 6: Shannon entropy’. URL: http://www.
ueltschi.org/teaching/chapShannon.pdf.

http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~rja14/book.html
https://github.com/OpenSecEd/appliedcrypto/releases/tag/v1.1
https://github.com/OpenSecEd/appliedcrypto/releases/tag/v1.1
https://doi.org/10.1109/SP.2012.38
http://cups.cs.cmu.edu/rshay/pubs/passwords_and_people2011.pdf
http://cups.cs.cmu.edu/rshay/pubs/passwords_and_people2011.pdf
https://doi.org/10.1007/978-0-387-73269-5_19
http://web.cs.ucdavis.edu/~peisert/research/Peisert-WISE2007-SecurityExperiments.pdf
http://web.cs.ucdavis.edu/~peisert/research/Peisert-WISE2007-SecurityExperiments.pdf
http://web.cs.ucdavis.edu/~peisert/research/Peisert-WISE2007-SecurityExperiments.pdf
https://doi.org/10.1145/3183341
http://lorrie.cranor.org/pubs/longpass-chi2014.pdf
http://lorrie.cranor.org/pubs/longpass-chi2014.pdf
http://www.ueltschi.org/teaching/chapShannon.pdf
http://www.ueltschi.org/teaching/chapShannon.pdf

A How to crack passwords

Cracking programs The papers above used some password-cracking soft-
ware. In addition, on the website

http://sectools.org/tag/crackers/

you can find a list of programs for password cracking. You are free to use any
program to solve this, however, there is a Docker image available to make things
easy.

The Windows hash is an old NTLM hash, which means that it is not salted?]
The UNIX hash is salted and uses Blowfish (OpenBSD).

How to obtain the password hashes For a UNIX-like operating system
the password hashes with corresponding salts are stored in the file ‘/etc/mas-
ter.passwd’ on BSD-based systems such as OpenBSD and FreeBSD. In the case
of Linux-based systems such as Ubuntu, the file used is ‘/etc/shadow’. You need
privileges (root) to read this file.

The hashes on a Windows system can be acquired by the program fgdump.
This is available from URL

http://www.foofus.net/~fizzgig/fgdump/|

The hashes in this assignment are already extracted from these files for
your convenience. You are going to find the passwords for both Windows and
UNIX-like systems. Thus, you do not have to use any program like fgdump or
unshadow(8) to extract them.

A.1 A Docker image

If you have Docker on your computer you can use the container provided here.
It has John the Ripper and Ophcrack preinstalled. To use it, create a directory
on your computer where you have all the files you would like to have available.
Then start the container from that directory.

docker run -it -v $(pwd):/pwdeval dbosk/pwdeval

This will map the current directory to the working directory (/pwdeval) inside
the container. The first time you run it, it will automatically download the
image from Docker Hub.

A.2 Instructions for Ophcrack and John the Ripper

Ophcrack The ophcrack(1l) program uses a technique called rainbow tables.
What this means is that all password and hash-value combinations are precom-
puted and stored in a huge table. This is called a hash table. The rainbow table
is a special case of hash table, the benefit is that it is smaller than a conven-
tional hash table. The hash table reduces the problem of cracking the password
to searching this huge table.

The alternative approach is to compute the hash value for each guess, this
takes time and this time is what is saved by using a hash table. However, this

4Consider this when choosing your method for cracking.

http://sectools.org/tag/crackers/
http://www.foofus.net/~fizzgig/fgdump/

comes with some compromises, the hash tables (and even rainbow tables) re-
quires a lot of computational resources to produce. They also requires great
resources to use, they must preferably fit in the computers primary memory.
Hence the use of hash tables and rainbow tables is a trade-off between compu-
tational and storage resources.

Because of the space limitations of this method it can easily be countered
by adding a salt to the hash. This means that the rainbow table must increase
too much in size to be feasible. Unfortunately, some Windows hashes are not
salted, so this method can be used on those hashes (at least in some cases).
UNIX-like systems has a longer tradition of using salts, so this method is not
feasible on those hashes.

You will find ophcrack(1) in the package manager of most UNIX-like systems.
You can also find it on URL

http://ophcrack.sourceforge.net/\

You also need a few rainbow tables to be able to use the program. You can find
these on the website above. Choose your tables carefully.

John the Ripper John the Ripper is a terminal-based program using many
different ways of cracking passwords. It has the possibility of brute-force attacks,
dictionary attacks, and the possibility of using rules to modify the words in the
dictionary (e.g., ‘leet-speak’). Naturally, these methods takes much longer time
to use than a rainbow table, since all computations are done in real-time.

The program can be found in the package manager of most UNIX-like sys-
tems, or on URL

http://www.openwall.com/john/.

You are recommended to use the ‘Community Enhanced Version’.

To have a short summary of the possible arguments to pass to John the
Ripper, just run the command ‘john’ in the terminal without any arguments.
See listing |1} You can also read the manual page john(1).

The most interesting arguments are

e —show,

e —wordlist,

e —rules, and

e —incremental=all.

Note that ‘—wordlist’ and ‘—stdin’ are separate arguments. The first reads words
from a file (provided a filename) while the latter reads words from standard
input. You can read more about this in the manual by typing ‘man 1 john’ in
the terminal.

You will find links to different wordlists to use in the following URL:

http://sectools.org/tag/crackers/.

Choose your wordlists with care. You also have the script ‘pwdstream.py’ (ap-
pendix [A.3]) to help generate a stream of passwords, see ./pwdstream.py -h’ for
details.

http://ophcrack.sourceforge.net/
http://www.openwall.com/john/
http://sectools.org/tag/crackers/

Listing 1: Output from John the Ripper in the terminal.

$ john

John the Ripper password cracker, version 1.7.8
Copyright (c¢) 1996—2011 by Solar Designer
Homepage: http://www.openwall.com/john/

Usage: john [OPTIONS] [PASSWORD-FILES]

——single ”single crack” mode

—wordlist=FILE —stdin wordlist mode, read words from FILE or stdin
—rules enable word mangling rules for wordlist mode
—incremental [=MODE] "incremental” mode [using section MODE]
—external=MODE external mode or word filter

—stdout [=LENGTH] just output candidate passwords [cut at LENGTH]
——restore [=NAME)] restore an interrupted session [called NAME)]
——session=NAME give a new session the NAME

——status [=NAME)] print status of a session [called NAME]
—make—charset=FILE make a charset , FILE will be overwritten

——show show cracked passwords

—test [=TIME] run tests and benchmarks for TIME seconds each
—users=[—|]LOGIN|UID[,..] [do not] load this (these) user(s) only
—groups=[—]|GID[,..] load users [not] of this (these) group(s) only
—shells=[—]SHELL [,..] load users with[out] this (these) shell(s) only
—salts=[—]COUNT load salts with[out] at least COUNT passwords only
—format=NAME force hash type NAME: DES/BSDI/MD5/BF/AFS/ILM/crypt
——save—memory=LEVEL enable memory saving, at LEVEL 1..3

$

A.3 Password guess generator

For this lab there is also a password guess generator. This can be used to
better control what guesses are used while cracking. It will output a stream of
passwords, one per line, on standard out, hence you can pipe this to John the
Ripper using the ‘—stdin’ option.

You can find its source code downloadable from the URL

https:
//github.com/0OpenSecEd/passwd/releases/download/vl.1/pwdstream.py.

Acknowledgement

This work was originally based on previous work by Rahim Rahmani and Curt-
Olof Klasson. It has evolved much since then, essentially only the Windows
password hash is the same.

This work is released under the Creative Commons Attribution-ShareAlike
3.0 Unported license. To view a copy of this license, visit http://creativecommons.
org/licenses/by-sa/3.0/. You can find the original source code in URL
https://github.com/0OpenSecEd/passwd/pwdguess/|

https://github.com/OpenSecEd/passwd/releases/download/v1.1/pwdstream.py
https://github.com/OpenSecEd/passwd/releases/download/v1.1/pwdstream.py
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://github.com/OpenSecEd/passwd/pwdguess/

	Introduction
	Assignment
	Password-composition policies
	Password managers and other tools

	Examination
	How to crack passwords
	A Docker image
	Instructions for Ophcrack and John the Ripper
	Password guess generator

