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Information density and redundancy

Definition

Natural language L.
Stochastic variable Pn

L of strings of length n.
(Alphabet PL.)
Entropy of L defined as

HL = lim
n→∞

H(Pn
L)

n
.

Redundancy in L is

RL = 1− HL

log |PL|
.
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Information density and redundancy

Remark

Meaning we have HL bits per character in L.

Example ([Sha48])

Entropy of 1–1.5 bits per character in English.
Redundancy of approximately 1− 1.25

log 26 ≈ 0.73.
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Information density and redundancy

Example ([Sha48])

Two-dimensional cross-word puzzles requires redundancy of
approximately 0.5.

Example

Redundancy of ‘SMS languages’ is lower than for ‘non-SMS
languages’.
Compare ‘wait’ and ‘w8’.

Remark

Lower redundancy is more space-efficient.
Incurs more errors.
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Passwords

Idea [Kom+11]

Look at different aspects of passwords individually, then
summarize.
Can use H(x1, x2, . . . , xn) ≤ H(x1) + H(x2) + · · ·+ H(xn).
This allows us to reason about bounds.
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Passwords

Example

We can look at properties such as:
length,
number of and placement of character classes,
the actual characters,
. . .

Remark

These are not independent.
The sum will be an upper bound.
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Passwords

Remark

With an upper bound we know it’s not possible to do better.
With an average we know how well most users will do.
With a lower bound we have a guarantee — not possible!
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Passwords

Remark

If a password policy yields low entropy, it implies it’s bad.
If a password policy yields high entropy, it doesn’t imply that
it’s good.

Exercise

Why?
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Passwords

Figure: xkcd’s strip on password strength. Picture: xkcd [xkc].
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Passwords

Example (Standard password)

We have
26 alphabetic characters,
10 numbers,
10 special characters (approximately).

This yields log(2× 26+ 10+ 10) = log 72 ≈ 6 bit per
password character.
A 10-character uniformly randomly generated password
contains 60 bit.

Remark

What happens when we require two upper and two lower-case
characters, two numbers must be included?
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Passwords

Example (Four-word passphrase)

We have 125 000 words in the standard Swedish dictionary.
This yields log 125 000 ≈ 17 bit per word.
A four-word uniformly randomly generated passphrase contains
68 bit.
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Passwords

Example (Random sentence)

We estimated the entropy per character in a language.
It was approximately 1.25 bit for English.
A 20-character uniformly randomly generated sentence would
yield 25 bit.
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Passwords

Remark

All these require uniform randomness.
Humans are bad at remembering random things.
Thus they will choose non-randomly.
The entropy will thus be (possibly much) lower.
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Identifying information

Example

Do we get more information from zodiac signs or birthdays?

−
∑

zodiacs

1
12

log
1
12

= log 12 ≈ 3.58

< −
∑

days of year

1
365

log
1
365

= log 365 ≈ 8.51.
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Exercise

How much information do we need to uniquely identify an
individual?
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Identifying information

Example

Sometime during 2011 there were n = 6 973 738 4331 people
on earth.
To give everyone a unique identifier we need log n ≈ 32.7 ≈ 33
bits of information.

1According to the World Bank.
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Identifying information in browsers

Electronic Frontier Foundation (EFF) studied [Eck10] how
much information a web-browser shares.
You can try your browser in

http://panopticlick.eff.org/, and
https://amiunique.org/.

Example (My browser)

My Firefox-browser with all addons gave 21.45 bits of entropy.
Then the number of tested users were 2 860 696.
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Figure: Screenshot from Collusion (now Lightbeam) for Firefox. Map
over all pages that track me using this information.
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