Applications of information theory

Daniel Bosk

Department of Information and Communication Systems, Mid Sweden University, Sundsvall.

6th April 2020

1 Applications

- Information density and redundancy

■ Passwords

- Identifying information

1 Applications
■ Information density and redundancy

- Passwords
- Identifying information

Definition

- Natural language L.
- Stochastic variable P_{L}^{n} of strings of length n.
- (Alphabet P_{L}.)
- Entropy of L defined as

$$
H_{L}=\lim _{n \rightarrow \infty} \frac{H\left(\mathrm{P}_{L}^{n}\right)}{n}
$$

- Redundancy in L is

$$
R_{L}=1-\frac{H_{L}}{\log \left|P_{L}\right|}
$$

00000
Information density and redundancy

Remark

Meaning we have H_{L} bits per character in L.

Example ([Sha48])

- Entropy of 1-1.5 bits per character in English.
- Redundancy of approximately $1-\frac{1.25}{\log 26} \approx 0.73$.

Example ([Sha48])

Two-dimensional cross-word puzzles requires redundancy of approximately 0.5 .

Example

- Redundancy of 'SMS languages' is lower than for 'non-SMS languages'.
- Compare 'wait' and 'w8'.

Remark

- Lower redundancy is more space-efficient.
- Incurs more errors.

Idea [Kom+11]

- Look at different aspects of passwords individually, then summarize.
■ Can use $H\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq H\left(x_{1}\right)+H\left(x_{2}\right)+\cdots+H\left(x_{n}\right)$.
- This allows us to reason about bounds.

Example

- We can look at properties such as:
- length,
- number of and placement of character classes,
- the actual characters,
-...

Remark

- These are not independent.
- The sum will be an upper bound.

Example

- We can look at properties such as:
- length,
- number of and placement of character classes,
- the actual characters,
- ...

Remark

- These are not independent.
- The sum will be an upper bound.

Remark

- With an upper bound we know it's not possible to do better.
- With an average we know how well most users will do.
- With a lower bound we have a guarantee - not possible!

Remark

- If a password policy yields low entropy, it implies it's bad.
- If a password policy yields high entropy, it doesn't imply that it's good.

Exercise

Why?

Remark

- If a password policy yields low entropy, it implies it's bad.
- If a password policy yields high entropy, it doesn't imply that it's good.

Exercise

Why?

~ 44 BITS OF ENTROPY

$2^{44}=550$ YEARS AT 1000 GUESSES/SEC

DIFFICULTY TO GUESS: HARD

DIFFICULTY TO REMEMBER:
HARD

THROUGH 20 YEARS CF EFFORT, WE'VE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THIAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Figure: xkcd's strip on password strength. Picture: xkcd [xkc].

Example (Standard password)

- We have
- 26 alphabetic characters,
- 10 numbers,

■ 10 special characters (approximately).

- This yields $\log (2 \times 26+10+10)=\log 72 \approx 6$ bit per password character.
- A 10-character uniformly randomly generated password contains 60 bit.

Remark

What happens when we require two upper and two lower-case characters, two numbers must be included?

Example (Standard password)

- We have
- 26 alphabetic characters,
- 10 numbers,

■ 10 special characters (approximately).

- This yields $\log (2 \times 26+10+10)=\log 72 \approx 6$ bit per password character.
- A 10-character uniformly randomly generated password contains 60 bit.

Remark

What happens when we require two upper and two lower-case characters, two numbers must be included?

Example (Four-word passphrase)

- We have 125000 words in the standard Swedish dictionary.
- This yields $\log 125000 \approx 17$ bit per word.
- A four-word uniformly randomly generated passphrase contains 68 bit.

Example (Random sentence)

- We estimated the entropy per character in a language.

■ It was approximately 1.25 bit for English.

- A 20-character uniformly randomly generated sentence would yield 25 bit.

Remark

- All these require uniform randomness.
- Humans are bad at remembering random things.
- Thus they will choose non-randomly.
- The entropy will thus be (possibly much) lower.

Example

Do we get more information from zodiac signs or birthdays?

$$
\begin{aligned}
-\sum_{\text {zodiacs }} \frac{1}{12} \log \frac{1}{12} & =\log 12 \approx 3.58 \\
& <-\sum_{\text {days of year }} \frac{1}{365} \log \frac{1}{365}=\log 365 \approx 8.51
\end{aligned}
$$

Exercise

How much information do we need to uniquely identify an individual?

Example

■ Sometime during 2011 there were $n=6973738433^{1}$ people on earth.

- To give everyone a unique identifier we need $\log n \approx 32.7 \approx 33$ bits of information.
${ }^{1}$ According to the World Bank.

Identifying information in browsers

- Electronic Frontier Foundation (EFF) studied [Eck10] how much information a web-browser shares.
- You can try your browser in
- http://panopticlick.eff.org/, and

■ https://amiunique.org/.

Example (My browser)
 - My Firefox-browser with all addons gave 21.45 bits of entropy.
 - Then the number of tested users were 2860696

Identifying information in browsers

- Electronic Frontier Foundation (EFF) studied [Eck10] how much information a web-browser shares.
- You can try your browser in
- http://panopticlick.eff.org/, and
- https://amiunique.org/.

Example (My browser)

- My Firefox-browser with all addons gave 21.45 bits of entropy.

■ Then the number of tested users were 2860696.

Figure: Screenshot from Collusion (now Lightbeam) for Firefox. Map over all pages that track me using this information.
[Eck10] Peter Eckersley. 'How Unique Is Your Browser?' In: Privacy Enhancing Technologies. Springer. 2010, pp. 1-18. URL: https:
//panopticlick.eff.org/static/browseruniqueness.pdf.
[Kom+11] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek, Lujo Bauer, Christin Nicolas, Lorrie Faith Cranor and Serge Egelman. 'Of passwords and people: Measuring the effect of password-composition policies'. In: CHI. 2011. URL: http://cups.cs.cmu.edu/rshay/pubs/ passwords_and_people2011.pdf.
[Sha48] C. E. Shannon. 'A Mathematical Theory of Communication'. In: The Bell System Technical Journal 27 (July 1948), pp. 379-423, 623-656.
[xkc] xkcd. Password Strength. URL:
https://xkcd.com/936/.

