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One-way functions

Hash functions

Idea

We want a function which we can efficiently compute.
However, it shouldn’t be possible to find its inverse.

Example

Easy f (x) = y

Hard f −1(y) = x
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One-way functions

Hash functions
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Figure: Two non-injective, surjective functions h and h′.

Exercise

Could either of these two functions be one-way functions?
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One-way functions

Hash functions

Definition (One-way function1)

Let h : {0, 1}∗ → {0, 1}∗.
h is one-way if

1 there exists an efficient algorithm A such that A(x) = h(x);
2 for every efficient algorithm A′, every positive polynomial p(·)

and all sufficiently large n’s

Pr
[
A′(h(x), 1n) ∈ h−1(h(x))

]
<

1
p(n)

1GoldreichFOC-1.
Daniel Bosk KTH/MIUN

One-way functions 5



One-way functions

Hash functions

Definition (Preimage resistance)

Input hash function H, value y .
Output Any x such that H(x) = y .

Definition (Second preimage resistance)

Input hash function H, value x .
Output Any value x ′ such that H(x) = H(x ′).

Definition (Collision resistance)

Input hash function H.
Output Any two x , x ′ such that H(x) = H(x ′).
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One-way functions

Hash functions

Example (Implementations you might’ve heard of)

MD5
SHA1
SHA256 (SHA-2)
SHA-3

Example (Applications)

Verifying file content integrity
Digital signatures
Protect passwords
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One-way functions

Hash functions

Note

One-wayness returns as a useful property in many situations.
Encryption also has the one-wayness property:

Easy Given k ,m, compute c ← Enck(m).
Hard Given c , compute either of k ,m.

However, encryption is bijective, hash functions are generally
not.
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One-way functions

Message-authentication codes

Example

Let Enck(·) = Deck(·) = · ⊕ k mod 2.
Alice and Bob share k .
Alice sends Enck(m) = c to Bob.
Eve intercepts c , she cannot get to m.
Eve computes c ′ = c ⊕mE and passes c ′ to Bob.
Bob computes
Deck(c

′) = Deck(c ⊕mE ) = m ⊕ k ⊕mE ⊕ k = m ⊕mE .

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!
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One-way functions

Message-authentication codes

Idea: MACs

Alice and Bob need something that Eve doesn’t know how to
modify.
If that something is tied to the message, then a modified
message would be detectable.

Exercise

Any ideas on how we can construct such a thing?
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One-way functions

Message-authentication codes

Example

Let h be a one-way function.
If we use h(c) = t, then Eve can also compute the hash
function: h(c ′) = t ′.
A secret hash function would violate Kerckhoff’s principle, so
that’s not an option.
If we instead use the message, rather than the ciphertext.
Then h(m) = t and

Dec(k)c ′ = m′ = m ⊕mE , h(m
′) 6= t.

Dec(k)c = m, h(m) = t.

Eve makes up m′, she can compute t ′ = h(m′).
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One-way functions

Message-authentication codes

Solution

Let s be a secret shared between Alice and Bob.
h(c ‖ s) = t, Eve doesn’t know s.
Bob can immediately check h(c ′ ‖ s) 6= t.

Note

It requires even a bit more than this!
But the idea is correct.
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One-way functions

Message-authentication codes

Solution (Hash-based message-authentication code, HMAC2)

Let h be a one-way function.
Let c be the ciphertext, s our MA secret.
Then tag t = HMACs(c), where

HMACs(c) = h [(s ⊕ po) ‖ h [(s ⊕ pi ) ‖ c]] ,

and pi , po are inner and outer pads, respectively.

Note

This is proven secure by HMAC!

2HMAC.
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