
One-way functions

One-way functions

Daniel Bosk

School of Computer Science and Communication,
KTH Royal Institute of Technology, Stockholm

Department of Information and Communication Systems,
Mid Sweden University, Sundsvall

6th April 2020

Daniel Bosk KTH/MIUN

One-way functions 1



One-way functions

1 One-way functions
Hash functions
Message-authentication codes

Daniel Bosk KTH/MIUN

One-way functions 2



One-way functions

Hash functions

Idea

We want a function which we can efficiently compute.
However, it shouldn’t be possible to find its inverse.

Example

Easy f (x) = y

Hard f −1(y) = x

Daniel Bosk KTH/MIUN

One-way functions 3



One-way functions

Hash functions

Idea

We want a function which we can efficiently compute.
However, it shouldn’t be possible to find its inverse.

Example

Easy f (x) = y

Hard f −1(y) = x

Daniel Bosk KTH/MIUN

One-way functions 3



One-way functions

Hash functions

X

1

2

3

4

Y

D

B

C

(a)
h : X → Y

A

B

C

AB

AC

BC

ABC

1

2

3

X Y

(b) h′ : X → Y

Figure: Two non-injective, surjective functions h and h′.

Exercise

Could either of these two functions be one-way functions?

Daniel Bosk KTH/MIUN

One-way functions 4



One-way functions

Hash functions

Definition (One-way function1)

Let h : {0, 1}∗ → {0, 1}∗.
h is one-way if

1 there exists an efficient algorithm A such that A(x) = h(x);
2 for every efficient algorithm A′, every positive polynomial p(·)

and all sufficiently large n’s

Pr
[
A′(h(x), 1n) ∈ h−1(h(x))

]
<

1
p(n)

1GoldreichFOC-1.
Daniel Bosk KTH/MIUN

One-way functions 5



One-way functions

Hash functions

Definition (Preimage resistance)

Input hash function H, value y .
Output Any x such that H(x) = y .

Definition (Second preimage resistance)

Input hash function H, value x .
Output Any value x ′ such that H(x) = H(x ′).

Definition (Collision resistance)

Input hash function H.
Output Any two x , x ′ such that H(x) = H(x ′).

Daniel Bosk KTH/MIUN

One-way functions 6



One-way functions

Hash functions

Example (Implementations you might’ve heard of)

MD5
SHA1
SHA256 (SHA-2)
SHA-3

Example (Applications)

Verifying file content integrity
Digital signatures
Protect passwords

Daniel Bosk KTH/MIUN

One-way functions 7



One-way functions

Hash functions

Note

One-wayness returns as a useful property in many situations.
Encryption also has the one-wayness property:

Easy Given k ,m, compute c ← Enck(m).
Hard Given c , compute either of k ,m.

However, encryption is bijective, hash functions are generally
not.

Daniel Bosk KTH/MIUN

One-way functions 8



One-way functions

Message-authentication codes

Example

Let Enck(·) = Deck(·) = · ⊕ k mod 2.
Alice and Bob share k .
Alice sends Enck(m) = c to Bob.
Eve intercepts c , she cannot get to m.
Eve computes c ′ = c ⊕mE and passes c ′ to Bob.
Bob computes
Deck(c

′) = Deck(c ⊕mE ) = m ⊕ k ⊕mE ⊕ k = m ⊕mE .

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!

Daniel Bosk KTH/MIUN

One-way functions 9



One-way functions

Message-authentication codes

Example

Let Enck(·) = Deck(·) = · ⊕ k mod 2.
Alice and Bob share k .
Alice sends Enck(m) = c to Bob.
Eve intercepts c , she cannot get to m.
Eve computes c ′ = c ⊕mE and passes c ′ to Bob.
Bob computes
Deck(c

′) = Deck(c ⊕mE ) = m ⊕ k ⊕mE ⊕ k = m ⊕mE .

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!

Daniel Bosk KTH/MIUN

One-way functions 9



One-way functions

Message-authentication codes

Example

Let Enck(·) = Deck(·) = · ⊕ k mod 2.
Alice and Bob share k .
Alice sends Enck(m) = c to Bob.
Eve intercepts c , she cannot get to m.
Eve computes c ′ = c ⊕mE and passes c ′ to Bob.
Bob computes
Deck(c

′) = Deck(c ⊕mE ) = m ⊕ k ⊕mE ⊕ k = m ⊕mE .

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!

Daniel Bosk KTH/MIUN

One-way functions 9



One-way functions

Message-authentication codes

Example

Let Enck(·) = Deck(·) = · ⊕ k mod 2.
Alice and Bob share k .
Alice sends Enck(m) = c to Bob.
Eve intercepts c , she cannot get to m.
Eve computes c ′ = c ⊕mE and passes c ′ to Bob.
Bob computes
Deck(c

′) = Deck(c ⊕mE ) = m ⊕ k ⊕mE ⊕ k = m ⊕mE .

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!

Daniel Bosk KTH/MIUN

One-way functions 9



One-way functions

Message-authentication codes

Example

Let Enck(·) = Deck(·) = · ⊕ k mod 2.
Alice and Bob share k .
Alice sends Enck(m) = c to Bob.
Eve intercepts c , she cannot get to m.
Eve computes c ′ = c ⊕mE and passes c ′ to Bob.
Bob computes
Deck(c

′) = Deck(c ⊕mE ) = m ⊕ k ⊕mE ⊕ k = m ⊕mE .

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!

Daniel Bosk KTH/MIUN

One-way functions 9



One-way functions

Message-authentication codes

Example

Let Enck(·) = Deck(·) = · ⊕ k mod 2.
Alice and Bob share k .
Alice sends Enck(m) = c to Bob.
Eve intercepts c , she cannot get to m.
Eve computes c ′ = c ⊕mE and passes c ′ to Bob.
Bob computes
Deck(c

′) = Deck(c ⊕mE ) = m ⊕ k ⊕mE ⊕ k = m ⊕mE .

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!

Daniel Bosk KTH/MIUN

One-way functions 9



One-way functions

Message-authentication codes

Idea: MACs

Alice and Bob need something that Eve doesn’t know how to
modify.
If that something is tied to the message, then a modified
message would be detectable.

Exercise

Any ideas on how we can construct such a thing?

Daniel Bosk KTH/MIUN

One-way functions 10



One-way functions

Message-authentication codes

Idea: MACs

Alice and Bob need something that Eve doesn’t know how to
modify.
If that something is tied to the message, then a modified
message would be detectable.

Exercise

Any ideas on how we can construct such a thing?

Daniel Bosk KTH/MIUN

One-way functions 10



One-way functions

Message-authentication codes

Idea: MACs

Alice and Bob need something that Eve doesn’t know how to
modify.
If that something is tied to the message, then a modified
message would be detectable.

Exercise

Any ideas on how we can construct such a thing?

Daniel Bosk KTH/MIUN

One-way functions 10



One-way functions

Message-authentication codes

Example

Let h be a one-way function.
If we use h(c) = t, then Eve can also compute the hash
function: h(c ′) = t ′.
A secret hash function would violate Kerckhoff’s principle, so
that’s not an option.
If we instead use the message, rather than the ciphertext.
Then h(m) = t and

Dec(k)c ′ = m′ = m ⊕mE , h(m
′) 6= t.

Dec(k)c = m, h(m) = t.

Eve makes up m′, she can compute t ′ = h(m′).

Daniel Bosk KTH/MIUN

One-way functions 11



One-way functions

Message-authentication codes

Example

Let h be a one-way function.
If we use h(c) = t, then Eve can also compute the hash
function: h(c ′) = t ′.
A secret hash function would violate Kerckhoff’s principle, so
that’s not an option.
If we instead use the message, rather than the ciphertext.
Then h(m) = t and

Dec(k)c ′ = m′ = m ⊕mE , h(m
′) 6= t.

Dec(k)c = m, h(m) = t.

Eve makes up m′, she can compute t ′ = h(m′).

Daniel Bosk KTH/MIUN

One-way functions 11



One-way functions

Message-authentication codes

Example

Let h be a one-way function.
If we use h(c) = t, then Eve can also compute the hash
function: h(c ′) = t ′.
A secret hash function would violate Kerckhoff’s principle, so
that’s not an option.
If we instead use the message, rather than the ciphertext.
Then h(m) = t and

Dec(k)c ′ = m′ = m ⊕mE , h(m
′) 6= t.

Dec(k)c = m, h(m) = t.

Eve makes up m′, she can compute t ′ = h(m′).

Daniel Bosk KTH/MIUN

One-way functions 11



One-way functions

Message-authentication codes

Example

Let h be a one-way function.
If we use h(c) = t, then Eve can also compute the hash
function: h(c ′) = t ′.
A secret hash function would violate Kerckhoff’s principle, so
that’s not an option.
If we instead use the message, rather than the ciphertext.
Then h(m) = t and

Dec(k)c ′ = m′ = m ⊕mE , h(m
′) 6= t.

Dec(k)c = m, h(m) = t.

Eve makes up m′, she can compute t ′ = h(m′).

Daniel Bosk KTH/MIUN

One-way functions 11



One-way functions

Message-authentication codes

Example

Let h be a one-way function.
If we use h(c) = t, then Eve can also compute the hash
function: h(c ′) = t ′.
A secret hash function would violate Kerckhoff’s principle, so
that’s not an option.
If we instead use the message, rather than the ciphertext.
Then h(m) = t and

Dec(k)c ′ = m′ = m ⊕mE , h(m
′) 6= t.

Dec(k)c = m, h(m) = t.

Eve makes up m′, she can compute t ′ = h(m′).

Daniel Bosk KTH/MIUN

One-way functions 11



One-way functions

Message-authentication codes

Solution

Let s be a secret shared between Alice and Bob.
h(c ‖ s) = t, Eve doesn’t know s.
Bob can immediately check h(c ′ ‖ s) 6= t.

Note

It requires even a bit more than this!
But the idea is correct.

Daniel Bosk KTH/MIUN

One-way functions 12



One-way functions

Message-authentication codes

Solution

Let s be a secret shared between Alice and Bob.
h(c ‖ s) = t, Eve doesn’t know s.
Bob can immediately check h(c ′ ‖ s) 6= t.

Note

It requires even a bit more than this!
But the idea is correct.

Daniel Bosk KTH/MIUN

One-way functions 12



One-way functions

Message-authentication codes

Solution

Let s be a secret shared between Alice and Bob.
h(c ‖ s) = t, Eve doesn’t know s.
Bob can immediately check h(c ′ ‖ s) 6= t.

Note

It requires even a bit more than this!
But the idea is correct.

Daniel Bosk KTH/MIUN

One-way functions 12



One-way functions

Message-authentication codes

Solution (Hash-based message-authentication code, HMAC2)

Let h be a one-way function.
Let c be the ciphertext, s our MA secret.
Then tag t = HMACs(c), where

HMACs(c) = h [(s ⊕ po) ‖ h [(s ⊕ pi ) ‖ c]] ,

and pi , po are inner and outer pads, respectively.

Note

This is proven secure by HMAC!

2HMAC.
Daniel Bosk KTH/MIUN

One-way functions 13



One-way functions

Message-authentication codes

Solution (Hash-based message-authentication code, HMAC2)

Let h be a one-way function.
Let c be the ciphertext, s our MA secret.
Then tag t = HMACs(c), where

HMACs(c) = h [(s ⊕ po) ‖ h [(s ⊕ pi ) ‖ c]] ,

and pi , po are inner and outer pads, respectively.

Note

This is proven secure by HMAC!

2HMAC.
Daniel Bosk KTH/MIUN

One-way functions 13



One-way functions

Message-authentication codes

Solution (Hash-based message-authentication code, HMAC2)

Let h be a one-way function.
Let c be the ciphertext, s our MA secret.
Then tag t = HMACs(c), where

HMACs(c) = h [(s ⊕ po) ‖ h [(s ⊕ pi ) ‖ c]] ,

and pi , po are inner and outer pads, respectively.

Note

This is proven secure by HMAC!

2HMAC.
Daniel Bosk KTH/MIUN

One-way functions 13



One-way functions

Message-authentication codes

Daniel Bosk KTH/MIUN

One-way functions 14


	One-way functions
	Hash functions
	message-authentication codes


