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History

Created 1948 by Shannon’s paper ‘A Mathematical Theory of
Communication’ [Sha48].
He starts using the term ‘entropy’ as a measure for
information.

In physics entropy measures the disorder of molecules.
Shannon’s entropy measures disorder of information.

He used this theory to analyse communication.
What are the theoretical limits for different channels?
How much redundancy is needed for certain noise?
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History

This theory is interesting on the physical layer of networking.
It’s also interesting for security.

Field of Information Theoretic Security
‘Efficiency’ of passwords
Measure identifiability
. . .
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Definition of Shannon Entropy

Definition (Shannon entropy)

Stochastic variable X assumes values from X .
Shannon entropy H(X) defined as

H(X) = −K
∑
x∈X

Pr(X = x) log Pr(X = x),

Usually K = 1
log 2 to give entropy in unit bits (bit).
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Definition of Shannon Entropy

Shannon entropy can be seen as . . .

. . . how much choice in each event.

. . . the uncertainty of each event.

. . . how many bits to store each event.

. . . how much information it produces.
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Definition of Shannon Entropy

Example (Toss a coin)

Stochastic variable S takes values from S = {h, t}.
We have Pr(S = h) = Pr(S = t) = 1

2 .

This gives H(S) as follows:

H(S) = − (Pr(S = h) log Pr(S = h) + Pr(S = t) log Pr(S = t))

= −2× 1
2
log

1
2
= log 2 = 1.
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Definition of Shannon Entropy

Example (Roll a die)

Stochastic variable D takes values from
D = { q , q q, qq q, q qq q, qq qq q, q qq qq q}.
We have Pr(D = d) = 1

6 for all d ∈ D.
The entropy H(D) is as follows:

H(D) = −
∑
d∈D

Pr(D = d) log Pr(D = d)

= −6× 1
6
log

1
6
= log 6 ≈ 2.585.
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Definition of Shannon Entropy

Remark

If we didn’t know already, we now know that a roll of a die . . .
contains more ‘choice’ than a coin toss.
is more uncertain to predict than a coin toss.
requires more bits to store than a coin toss.
produces more information than a coin toss.

What if we modify the die a bit?
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Definition of Shannon Entropy

Example (Roll of a modified die)

Stochastic variable D ′ taking values from D.
We now have Pr(D′ =

q qq qq q) = 9
10 and Pr(D′ = d) = 1

10 ×
1
5 for

d 6= q qq qq q.
This yields

H(D′) = −

 9
10

log
9
10

+
∑
d 6=6

1
50

log
1
50


= − 9

10
log

9
10
− 5× 1

50
log

1
50

= − 9
10

log
9
10
− 1

10
log

1
50
≈ 0.701.

Note that the log function is the logarithm in base 2 (i.e. log2).
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Definition of Shannon Entropy

Remark

This die is much easier to predict.
It produces much less information — less than a coin toss!
Requires less data for storage etc.
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Properties for Shannon entropy

Definition

Function f : R→ R such that

tf (x) + (1− t)f (y) ≤ f (tx + (1− t)y),

Then f is concave.
With strict inequality for x 6= y we say that f is strictly
concave.

Example

log : R→ R is strictly concave.
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Properties for Shannon entropy
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Properties for Shannon entropy

Theorem (Jensen’s inequality)

Strictly concave function f : R→ R.
Real numbers a1, a2, . . . , an > 0 such that

∑n
i=1 ai = 1.

Then we have

n∑
i=1

ai f (xi ) ≤ f

(
n∑

i=1

aixi

)
.

We have equality iff x1 = x2 = · · · = xn.
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Properties for Shannon entropy

Theorem

Stochastic variable X with probability distribution

p1, p2, . . . , pn, where pi > 0 for 1 ≤ i ≤ n.

Then H(X) ≤ log n.
Equality iff p1 = p2 = · · · = pn = 1/n.
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Properties for Shannon entropy

Proof.

The theorem follows directly from Jensen’s inequality:

H(X) = −
n∑

i=1

pi log pi =
n∑

i=1

pi log
1
pi

≤ log
n∑

i=1

pi
1
pi

= log n.

With equality iff p1 = p2 = · · · = pn. Q.E.D.
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Properties for Shannon entropy

Corollary

H(X) = 0 iff Pr(X = x) = 1 for some x ∈ X and Pr(X = x ′) = 0
for all x 6= x ′ ∈ X .

Proof.

If Pr(X = x) = 1, then n = 1 and thus H(X) = log n = 0.
If H(X) = 0, then H(X) ≤ log n = 0. Thus n = 1.

Q.E.D.
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Properties for Shannon entropy

Lemma

Stochastic variables X and Y.
Then we have

H(X,Y) ≤ H(X) + H(Y).

Equality iff X and Y are independent.
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Conditional entropy

Definition (Conditional entropy)

Define conditional entropy H(Y | X) as

H(Y | X) = −
∑
y

∑
x

Pr(Y = y) Pr(X = x | y) log Pr(X = x | y).

Remark

This is the uncertainty in Y which is not revealed by X.
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Conditional entropy

Theorem

H(X,Y) = H(X) + H(Y | X)

H(X ) H(Y | X )
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Conditional entropy

Corollary

H(X | Y) ≤ H(X).

Corollary

H(X | Y) = H(X) iff X and Y independent.
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Information gain

Definition

Set U of possible outcomes.
Probability of outcome u ∈ U denoted pu.
We learn that some unknown outcome is in A ⊂ U.
Then the information gain G (A | U) is defined as

G (A | U) = log
1

Pr(A)
= − log Pr(A),

where Pr(A) =
∑

i∈A pi .
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Information gain

Example (Roll of dice again)

Someone rolls and we should guess the result, 1
6 chance.

We learn that it was an even number, we gain

− log

(
1
6
+

1
6
+

1
6

)
= − log

3
6
= log

6
3
= log 2 = 1.

The remaining uncertainty is 1.58 bit.

Remark

X ′ = { q q, q qq q, q qq qq q}
H(X′) = −

∑
x∈X ′ Pr(X′ = x) log Pr(X′ = x)

I.e. −3× 1
3 log

1
3 ≈ 1.58.
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Information gain

Example (Dice yet again)

We learn the die show less than five, i.e. not qq qq q nor q qq qq q.
This yields

− log

(
4× 1

6

)
= log

6
4
≈ 0.58
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