Shannon entropy	
00	
0000000	
0000000	
000	
~ ~ ~	

Shannon entropy

Daniel Bosk

Department of Information and Communication Systems, Mid Sweden University, Sundsvall.

6th April 2020

hannon entropy	
000000	
00	

- History
- Definition of Shannon Entropy
- Properties for Shannon entropy
- Conditional entropy
- Information gain

00 0000000 0000000 000 000

1 Shannon entropy

- History
- Definition of Shannon Entropy
- Properties for Shannon entropy
- Conditional entropy
- Information gain

Shannon entropy ●0 ○○○○○○○ ○○○○○○○ ○○○ ○○○

History

- Created 1948 by Shannon's paper 'A Mathematical Theory of Communication' [Sha48].
- He starts using the term 'entropy' as a measure for information.
 - In physics entropy measures the disorder of molecules.
 - Shannon's entropy measures disorder of information.
- He used this theory to analyse communication.
 - What are the theoretical limits for different channels?
 - How much redundancy is needed for certain noise?

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Shannon entropy ●0 ○○○○○○○ ○○○○○○○ ○○○ ○○○

History

- Created 1948 by Shannon's paper 'A Mathematical Theory of Communication' [Sha48].
- He starts using the term 'entropy' as a measure for information.
 - In physics entropy measures the disorder of molecules.
 - Shannon's entropy measures disorder of information.
- He used this theory to analyse communication.
 - What are the theoretical limits for different channels?
 - How much redundancy is needed for certain noise?

Shannon entropy ●0 ○○○○○○○ ○○○○○○○ ○○○ ○○○

History

- Created 1948 by Shannon's paper 'A Mathematical Theory of Communication' [Sha48].
- He starts using the term 'entropy' as a measure for information.
 - In physics entropy measures the disorder of molecules.
 - Shannon's entropy measures disorder of information.
- He used this theory to analyse communication.
 - What are the theoretical limits for different channels?
 - How much redundancy is needed for certain noise?

Shannon entropy ⊙ ⊙ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	References
000 History	

• This theory is interesting on the physical layer of networking.

- It's also interesting for security.
 - Field of Information Theoretic Security
 - 'Efficiency' of passwords
 - Measure identifiability
 -

Shannon entropy ○● ○○○○○○○ ○○○○○ ○○○ ○○○ ○○○ ○○	References
History	

- This theory is interesting on the physical layer of networking.
- It's also interesting for security.
 - Field of Information Theoretic Security
 - 'Efficiency' of passwords
 - Measure identifiability
 - • •

•ooooooo 0000000 000

Definition of Shannon Entropy

Definition (Shannon entropy)

- Stochastic variable X assumes values from X.
- Shannon entropy $H(\mathbf{X})$ defined as

$$H(\mathbf{X}) = -K \sum_{x \in X} \Pr(\mathbf{X} = x) \log \Pr(\mathbf{X} = x),$$

• Usually $K = \frac{1}{\log 2}$ to give entropy in unit bits (bit).

イロト イヨト イヨト イヨト ヨー わへの

S	hanı	non	entre	vac
				• P J

Definition of Shannon Entropy

Shannon entropy can be seen as ...

- ... how much choice in each event.
- ... the uncertainty of each event.
- ... how many bits to store each event.
- ... how much information it produces.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Definition of Shannon Entropy

Example (Toss a coin)

- Stochastic variable **S** takes values from $S = \{h, t\}$.
- We have $Pr(\mathbf{S} = h) = Pr(\mathbf{S} = t) = \frac{1}{2}$.

■ This gives *H*(**S**) as follows:

$$egin{aligned} \mathcal{H}(\mathbf{S}) &= -\left(\Pr(\mathbf{S}=h) \log \Pr(\mathbf{S}=h) + \Pr(\mathbf{S}=t) \log \Pr(\mathbf{S}=t)
ight) \ &= -2 imes rac{1}{2} \log rac{1}{2} = \log 2 = 1. \end{aligned}$$

References

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Definition of Shannon Entropy

Example (Roll a die)

- Stochastic variable **D** takes values from $D = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}.$
- We have $Pr(\mathbf{D} = d) = \frac{1}{6}$ for all $d \in D$.

• The entropy $H(\mathbf{D})$ is as follows:

$$\mathcal{H}(\mathbf{D}) = -\sum_{d \in D} \Pr(\mathbf{D} = d) \log \Pr(\mathbf{D} = d)$$

 $= -6 imes rac{1}{6} \log rac{1}{6} = \log 6 pprox 2.585.$

References

S	han	non	entrony	
-	nan	non	entropy	

00 0000000 0000000 000 000

Definition of Shannon Entropy

Remark

If we didn't know already, we now know that a roll of a die

References

イロン イボン イヨン トヨ

- contains more 'choice' than a coin toss.
- is more uncertain to predict than a coin toss.
- requires more bits to store than a coin toss.
- produces more information than a coin toss.
- What if we modify the die a bit?

00 00000000 0000000 000 000

Definition of Shannon Entropy

Example (Roll of a modified die)

- Stochastic variable D' taking values from D.
- We now have $Pr(D' = \blacksquare) = \frac{9}{10}$ and $Pr(D' = d) = \frac{1}{10} \times \frac{1}{5}$ for $d \neq \blacksquare$.

References

This yields

$$H(\mathbf{D}') = -\left(\frac{9}{10}\log\frac{9}{10} + \sum_{d\neq 6}\frac{1}{50}\log\frac{1}{50}\right)$$
$$= -\frac{9}{10}\log\frac{9}{10} - 5 \times \frac{1}{50}\log\frac{1}{50}$$
$$= -\frac{9}{10}\log\frac{9}{10} - \frac{1}{10}\log\frac{1}{50} \approx 0.701$$

• Note that the log function is the logarithm in base 2 (i.e. \log_2).

Shannon	entropy

Definition of Shannon Entropy

Remark

- This die is much easier to predict.
- It produces much less information less than a coin toss!

References

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Requires less data for storage etc.

12

000000

References

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Properties for Shannon entropy

Definition

• Function $f: \mathbb{R} \to \mathbb{R}$ such that

$$tf(x)+(1-t)f(y)\leq f(tx+(1-t)y)$$

- Then f is concave.
- With strict inequality for x ≠ y we say that f is strictly concave.

Example

log: $\mathbb{R} \to \mathbb{R}$ is strictly concave.

00 0000000 000000 000 000

Properties for Shannon entropy

References

< □ > < □ > < □ > < □ > < □ > < □ > = □

14

Properties for Shannon entropy

Theorem (Jensen's inequality)

- Strictly concave function $f: \mathbb{R} \to \mathbb{R}$.
- Real numbers $a_1, a_2, \ldots, a_n > 0$ such that $\sum_{i=1}^n a_i = 1$.

Then we have

$$\sum_{i=1}^n a_i f(x_i) \le f\left(\sum_{i=1}^n a_i x_i\right)$$

• We have equality iff $x_1 = x_2 = \cdots = x_n$.

References

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

00 0000000 0000000 000

Properties for Shannon entropy

Theorem

Stochastic variable X with probability distribution

$$p_1, p_2, \ldots, p_n$$
, where $p_i > 0$ for $1 \le i \le n$.

References

References

Properties for Shannon entropy

Proof.

The theorem follows directly from Jensen's inequality:

$$egin{aligned} \mathcal{H}(\mathbf{X}) &= -\sum_{i=1}^n p_i \log p_i = \sum_{i=1}^n p_i \log rac{1}{p_i} \ &\leq \log \sum_{i=1}^n p_i rac{1}{p_i} = \log n. \end{aligned}$$

With equality iff $p_1 = p_2 = \cdots = p_n$. Q.E.D.

Shannon 🛛	entropy
-----------	---------

00 0000000 0000000 000 000

Properties for Shannon entropy

Corollary

 $H(\mathbf{X}) = 0$ iff $Pr(\mathbf{X} = x) = 1$ for some $x \in X$ and $Pr(\mathbf{X} = x') = 0$ for all $x \neq x' \in X$.

Proof.

If Pr(X = x) = 1, then n = 1 and thus H(X) = log n = 0.
If H(X) = 0, then H(X) ≤ log n = 0. Thus n = 1.

Q.E.D.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

CI								
- 51	na	nr	ıor	ıе	nτ	ro	Dν	
_							-	

Properties for Shannon entropy

Lemma

Stochastic variables X and Y.

Then we have

 $H(\mathbf{X}, \mathbf{Y}) \leq H(\mathbf{X}) + H(\mathbf{Y}).$

Equality iff X and Y are independent.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

00 0000000 0000000 000 000

Conditional entropy

Definition (Conditional entropy)

• Define conditional entropy $H(\mathbf{Y} \mid \mathbf{X})$ as

$$H(\mathbf{Y} \mid \mathbf{X}) = -\sum_{y} \sum_{x} \Pr(\mathbf{Y} = y) \Pr(\mathbf{X} = x \mid y) \log \Pr(\mathbf{X} = x \mid y).$$

Remark

This is the uncertainty in \mathbf{Y} which is not revealed by \mathbf{X} .

References

References

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

00 0000000 0000000 000

Conditional entropy

Definition (Conditional entropy)

• Define conditional entropy $H(\mathbf{Y} \mid \mathbf{X})$ as

$$H(\mathbf{Y} \mid \mathbf{X}) = -\sum_{y} \sum_{x} \Pr(\mathbf{Y} = y) \Pr(\mathbf{X} = x \mid y) \log \Pr(\mathbf{X} = x \mid y).$$

Remark

This is the uncertainty in \mathbf{Y} which is not revealed by \mathbf{X} .

Shannon entropy	References
Conditional entropy	

Theorem

$H(\mathbf{X},\mathbf{Y}) = H(\mathbf{X}) + H(\mathbf{Y} \mid \mathbf{X})$

Shannon entropy	References
000000	
000	
000	
Conditional entropy	

Corollary

 $H(\mathbf{X} \mid \mathbf{Y}) \leq H(\mathbf{X}).$

Corollary

H(X | Y) = H(X) iff X and Y independent.

S	han	non	entr	opv
-				

00 0000000 0000000 000

Information gain

Definition

- Set U of possible outcomes.
- Probability of outcome $u \in U$ denoted p_u .
- We learn that some *unknown* outcome is in $A \subset U$.
- Then the *information gain* $G(A \mid U)$ is defined as

$$G(A \mid U) = \log \frac{1}{\Pr(A)} = -\log \Pr(A),$$

where $Pr(A) = \sum_{i \in A} p_i$.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

00 0000000 0000000 000

Information gain

Example (Roll of dice again)

- Someone rolls and we should guess the result, $\frac{1}{6}$ chance.
- We learn that it was an even number, we gain

$$-\log\left(\frac{1}{6} + \frac{1}{6} + \frac{1}{6}\right) = -\log\frac{3}{6} = \log\frac{6}{3} = \log 2 = 1.$$

■ The remaining uncertainty is 1.58 bit.

Remark

•
$$X' = \{ \texttt{I}, \texttt{II} \}$$

• $H(X') = -\sum_{x \in X'} \Pr(X' = x) \log \Pr(X' = x)$
• I.e. $-3 \times \frac{1}{3} \log \frac{1}{3} \approx 1.58$.

00 0000000 0000000 000

Information gain

Example (Roll of dice again)

- Someone rolls and we should guess the result, $\frac{1}{6}$ chance.
- We learn that it was an even number, we gain

$$-\log\left(rac{1}{6}+rac{1}{6}+rac{1}{6}
ight)=-\lograc{3}{6}=\lograc{6}{3}=\log 2=1.$$

■ The remaining uncertainty is 1.58 bit.

Remark

•
$$X' = \{ :, ::, ::\}$$

• $H(X') = -\sum_{x \in X'} \Pr(X' = x) \log \Pr(X' = x)$
• I.e. $-3 \times \frac{1}{3} \log \frac{1}{3} \approx 1.58$.

Shannon entropy	References
Information gain	

Example (Dice yet again)

We learn the die show less than five, i.e. not I nor I.
This yields

$$-\log\left(4 imesrac{1}{6}
ight) = \lograc{6}{4} pprox 0.58$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへの

Shannon entropy 00 0000000 0000000 0000000 000 000	References
000	
D. Commence	

[Sha48] C. E. Shannon. 'A Mathematical Theory of Communication'. In: *The Bell System Technical Journal* 27 (July 1948), pp. 379–423, 623–656.