Introduction 00	Timing attacks 000 00 0	Emission attacks 0 0000 00000 000000	Summary	References

Side-channel attacks

Daniel Bosk

Department of Information Systems and Technology Mid Sweden University, Sundsvall.

6th April 2020

Daniel Bosk Side-channel attacks MIUN IST

(ロ) (四) (三) (三)

Introduction	Timing attacks 000 00 0	Emission attacks 0 0000 00000 00000	Summary	References

1 Introduction

What are side-channels?

2 Timing attacks

- Doing arithmetic
- Typing pattern and guessing passwords
- Summary

3 Emission attacks

- Emissions from electronic systems
- Exploiting acoustic emissions
- Exploiting voltage
- Exploiting electromagnetic emissions

4 Summary

MIUN IST

< 🗇 🕨

Introduction	Timing attacks	Emission attacks	Summary	References
•0	000 00 0	0 0000 00000 00000		
AA4	1.5			

What are side-channels?

Definition (Side Channel)

- Unintended channel emitting information.
- Due to physical implementation flaws and not theoretical weaknesses or forcing attempts.

Daniel Bosk Side-channel attacks MIUN IST

<ロ> (日) (日) (日) (日) (日)

Introduction ○●	Timing attacks 000 00 0	Emission attacks 0 0000 00000 000000	Summary	References
What are side-chan	nels?			

■ There are various categories, *e.g.*,

- timing attacks,
- acoustic attacks,
- electromagnetic attacks,
- ...

MIUN IST

(ロ) (四) (三) (三)

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 0000 00000 000000	Summary	References

- Doing arithmetic
- Typing pattern and guessing passwords
- Summary

3 Emission attacks

- Emissions from electronic systems
- Exploiting acoustic emissions
- Exploiting voltage
- Exploiting electromagnetic emissions

4 Summary

MIUN IST

< 🗇 🕨

∃ >

Introduction 00	Timing attacks ●00 ○0 ○	Emission attacks 0 0000 00000 000000	Summary	References
Doing arithmetic				

Example

- Use the standard algorithms for addition and multiplication (using the binary number system).
- Give any number to an algorithm A.
- A will multiply your number by a secret value x.
- Can you tell the difference between x = 3 or x = 7?

MIUN IST

Introduction 00	Timing attacks ⊙ ⊙ ⊙	Emission attacks 0 0000 00000 00000	Summary	References
Doing arithmetic				

- Assume that we give the number 25 as our challenge to A.
- Looking at the numbers we have we see that $3_{10} = 11_2$, $7_{10} = 111_2$ and $25_{10} = 11001_2$
- Assume each step in the algorithm takes one time unit.
- Then 11001 × 11 will take 17 time units:
 - 5 time units for multiplying the last 1 in 11 with each digit in 11001,
 - another 5 time units for the next digit in 11,
 - we have an additional 1 time unit for shifting the second result one step,
 - finally, we get 6 time units for adding the numbers.
- 11001 × 111 will take 24 time units:
 - 5 time units for each digit, hence 15 in total,
 - we have two shifts, thus 2 time units more,
 - finally we have 7 time units for adding.

Introduction 00	Timing attacks ○○● ○	Emission attacks 0 0000 00000 000000	Summary	References
Doing arithmetic				

Note

- The first multiplication takes 17 time units to perform, the second takes 24 time units.
- This is one example of why constant-time operations are desirable.

Exercise

Can we see the difference between $x = 2_{10} = 10_2$ and $x = 3_{10} = 11_2$?

MIUN IST

イロト イヨト イヨト イヨト

Introduction 00	Timing attacks oo● ○○ ○	Emission attacks 0 0000 00000 000000	Summary	References
Doing arithmetic				

Note

- The first multiplication takes 17 time units to perform, the second takes 24 time units.
- This is one example of why constant-time operations are desirable.

Exercise

• Can we see the difference between $x = 2_{10} = 10_2$ and $x = 3_{10} = 11_2$?

Daniel Bosk Side-channel attacks MIUN IST

<ロ> (日) (日) (日) (日) (日)

Introduction 00	Timing attacks ○○○ ●○ ○	Emission attacks o oooo oooooo oooooo	Summary	References
Typing pattern and	guessing passwords			

Example (SSH password guessing)

- Song, Wagner and Tian [SWT01] showed a timing attack on passwords sent over encrypted SSH sessions.
- As each keystroke in the password is sent in a separate package, the attacker can observe the delay between keystrokes.
- They found that this gave a factor 50 advantage for guessing the password.

MIUN IST

(日) (同) (日) (日)

Introduction	Timing attacks	Emission attacks	Summary	References
	000 0 0	0 0000 00000 00000		
Typing pattern and	guessing passwords			

Note

- Analytics scripts on many websites send key-presses to the server as you type.
- That's exactly the same situation.

MIUN IST

(ロ) (四) (三) (三)

Introduction 00	Timing attacks ○○○ ●	Emission attacks 0 00000 000000	Summary	References
Summary		000000		

- We can measure the time for different operations.
- Depending on the operations and times they take, we can figure out something about the operands.

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 0000 00000 000000	Summary	References
1 Introd	luction	1.2		

- Doing arithmetic
- Typing pattern and guessing passwords
- Summary

3 Emission attacks

- Emissions from electronic systems
- Exploiting acoustic emissions
- Exploiting voltage
- Exploiting electromagnetic emissions

4 Summary

MIUN IST

∃ → < ∃ →</p>

Introduction 00	Timing attacks 000 00 0	Emission attacks • • • • • • • • • • • • •	Summary	References
Emissions from electror	nic systems			

- Electronic systems emit signals just by running.
- Remember induction and similar properties from physics class.
- *E.g.*, electromagnetic emissions or acoustic emissions from vibrations.

MIUN IST

(日) (同) (日) (日)

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 •000 00000 00000	Summary	References
Exploiting acoustic	emissions	000000		
Exploring acoustic	cimissions			

- Some authors¹ showed an attack to extract a 4096-bit RSA private key from a laptop PC (GnuPG implementation of RSA).
- Computers emit high-pitched noise during operation due to vibrations in some of their electronic components.
- This was used to derive the key used for decryption of some chosen ciphertexts within an hour!
- Their results show that this attack can be accomplished by placing a mobile phone (microphone) next to the target laptop.

Introd	uction
00	

Emission attacks

0 00000 000000 Summar

References

Exploiting acoustic emissions

▲□▶▲□▶▲□▶▲□▶ = つくぐ

Daniel Bosk Side-channel attacks

Introduction	Timing attacks	Emission attacks	Summary	References
	000 00 0	0 0000 00000 00000		
E 1.32				

Exploiting acoustic emissions

- The acoustic signals are picked up from components in the power supply.
- Individual CPU operations are too fast for a microphone to pick up.
- But long operations such as modular exponentiation (as in RSA) can create a characteristic acoustic spectral signature which can be detected using a microphone.

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 000● 00000 000000	Summary	References

Exploiting acoustic emissions

Attacked bit is 0

Attacked bit is 1

(日) (日) (日) (日) (日)

Daniel Bosk Side-channel attacks MIUN IST

2

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 00000 ●00000	Summary	References
Exploiting voltage		00000		

• The same authors² did the same thing again, but with variations in the ground-electric potential.

²Daniel Genkin, Itamar Pipman and Eran Tromer. 'Get your hands off my laptop: physical side-channel key-extraction attacks on PCs'. In: *Journal of Cryptographic Engineering* 5.2 (June 2015), pp. 95–112. ISSN: 2190-8516. DOI: 10.1007/s13389-015-0100-7.

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 0000 0000 00000	Summary	References
Exploiting voltage				
			Key = 111011101	1

Daniel Bosk Side-channel attacks 2

(日) (日) (日) (日) (日)

Introduction	Timing attacks	Emission attacks	Summary	References
	000 00 0	0 0000 00●00 000000		
Evaloiting voltage				

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Daniel Bosk Side-channel attacks

Introd	uction
00	

Emission attacks 0 0000 00000 00000 00000

Summar

References

Exploiting voltage

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

Daniel Bosk Side-channel attacks

Introduction

Timing attacks

Emission attacks 0 0000 0000 0000

Summar

References

Exploiting voltage

Daniel Bosk Side-channel attacks

Introduction	Timing attacks	Emission attacks	Summary	References
	000 00 0	0 0000 00000 00000		
Exploiting electrom	agnetic emissions			

And again³, but with electromagnetic emissions.

³Daniel Genkin et al. 'Stealing Keys from PCs Using a Radio: Cheap Electromagnetic Attacks on Windowed Exponentiation'. In: *Cryptographic Hardware and Embedded Systems – CHES 2015*. Ed. by Tim Güneysu and Helena Handschuh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 207–228. ISBN: 978-3-662-48324-4.

Daniel Bosk

Introd	uction

Emission attacks

0000 00000 000000 Summar

References

Exploiting electromagnetic emissions

Daniel Bosk Side-channel attacks

Introduction 00	Timing attacks 000 00 0	Emission attacks ○ ○○○○ ○○○○○ ○○○○○	Summary	References
Evelaiting alastron				

Exploiting electromagnetic emissions

Daniel Bosk Side-channel attacks

Introd	
00	

Emission attacks

0 0000 00000 000000 Summary

References

Exploiting electromagnetic emissions

Daniel Bosk Side-channel attacks

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 0000 00000 000000	Summary	References
Exploiting electrom	agnetic emissions			

Note

- There are also other parts emitting electromagnetic signals.
- *E.g.*, screens [Kuh04].

MIUN IST

3

・ロン ・回 と ・ ヨ と ・ ヨ と …

Introd	luction
00	

Emission attacks

0 0000 00000 Summary

(日) (同) (日) (日)

References

Exploiting electromagnetic emissions

350 MHz, 50 MHz BW, 12 frames (160 ms) averaged

Fig. 3. Text signal received from a 440CDX laptop at 10 m distance through two intermediate offices (3 plasterboard walls).

Daniel Bosk Side-channel attacks

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 0000 00000 000000	Summary	References
1 Intro	duction			

• What are side-channels?

2 Timing attacks

- Doing arithmetic
- Typing pattern and guessing passwords
- Summary

3 Emission attacks

- Emissions from electronic systems
- Exploiting acoustic emissions
- Exploiting voltage
- Exploiting electromagnetic emissions

4 Summary

MIUN IST

< 🗇 🕨

Introduction	Timing attacks	Emission attacks	Summary	References
00	000 00 0	0 0000 00000 000000		

- We can measure something during the operations.
- From these measurements we can infer things about operands *etc*.

MIUN IST

<ロ> (日) (日) (日) (日) (日)

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 0000 00000 000000	Summary	References
[Gen+15]	Daniel Genkin	Lev Pachmanov It	amar Pinman a	and

Eran Tromer. 'Stealing Keys from PCs Using a Radio: Cheap Electromagnetic Attacks on Windowed Exponentiation'. In: *Cryptographic Hardware and Embedded Systems – CHES 2015*. Ed. by Tim Güneysu and Helena Handschuh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 207–228. ISBN: 978-3-662-48324-4.

[GPT15] Daniel Genkin, Itamar Pipman and Eran Tromer. 'Get your hands off my laptop: physical side-channel key-extraction attacks on PCs'. In: Journal of Cryptographic Engineering 5.2 (June 2015), pp. 95–112. ISSN: 2190-8516. DOI: 10.1007/s13389-015-0100-7.

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 00000 00000 000000	Summary	References

[GST14]

Daniel Genkin, Adi Shamir and Eran Tromer. 'RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis'. In: Advances in Cryptology – CRYPTO 2014. Ed. by JuanA. Garay and Rosario Gennaro. Vol. 8616. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2014, pp. 444–461. ISBN: 978-3-662-44370-5. DOI: 10.1007/978-3-662-44371-2_25. URL: http: //dx.doi.org/10.1007/978-3-662-44371-2_25.

[Kuh04]

Markus G Kuhn. 'Electromagnetic eavesdropping risks of flat-panel displays'. In: *Privacy Enhancing Technologies*. Springer. 2004, pp. 88–107.

MIUN IST

(日) (同) (日) (日)

Introduction 00	Timing attacks 000 00 0	Emission attacks 0 0000 00000 000000	Summary	References

[SWT01] Dawn Xiaodong Song, David Wagner and Xuqing Tian. 'Timing Analysis of Keystrokes and Timing Attacks on SSH.'. In: USENIX Security Symposium. Vol. 2001. 2001.

Image: Image: