Network Access Control and Wireless

Lennart Franked

Avdelningen för informations- och kommunikationssytem (IKS), Mittuniversitetet, Sundsvall.

October 30, 2014

Overview

- Network Access Control (NAC) and IEEE 802.1X
 - Network Access Control
 - Extensible Authentication Protocol
 - IEEE 802.1x
- Wireless Network Security
 - Wireless Security
- 802.11 Wireless Overview
 - 802.11 Wireless LAN
 - Wireless LAN Security

Literature

The lecture covers chapter 5.1 - 5.3 and chapter 7 "Wireless Network Security" in [1]. To check that you have fully understood these chapters, you should solve problems 7.1, and 7.2

Network Access Control

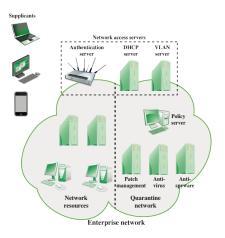


Figure 5.1 Network Access Control Context

Access Requestor

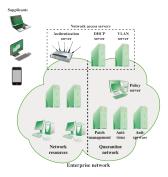


Figure 5.1 Network Access Control Context

Access Requestor

- Access Requestor, Client, Supplicants, peer
- Access the network.

Figure: [1].

Policy Server Network Access Control

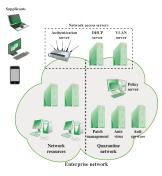


Figure 5.1 Network Access Control Context

Policy Server

Enforce access restrictions.

Network Access Server

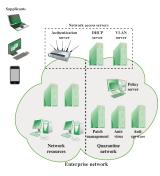


Figure 5.1 Network Access Control Context

Network Access Server

Control access to Network.

Network Access Enforcement Methods

- IEEE 802.1X EAP over LAN.
- VLAN.
- Firewall.
- DHCP management.

Network Access Enforcement Methods Network Access Control

- IEEE 802.1X EAP over LAN.
- VLAN.
- Firewall.
- DHCP management.

Network Access Enforcement Methods

- IEEE 802.1X EAP over LAN.
- VLAN.
- Firewall.
- DHCP management.

Network Access Enforcement Methods Network Access Control

- IEEE 802.1X EAP over LAN.
- VLAN.
- Firewall.
- DHCP management.

Extensible Authentication Protocol

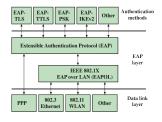


Figure 5.2 EAP Layered Context

- Framework for network access and authentication protocols.
- Mostly encountered in wireless networks and PPP-connections
- Extension to PPP

Figure: [1].

Extensible Authentication Protocol

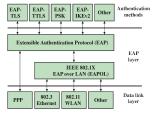


Figure 5.2 EAP Layered Context

- Framework for network access and authentication protocols.
- Mostly encountered in wireless networks and PPP-connections.
- Extension to PPP

Figure : [1].

Extensible Authentication Protocol

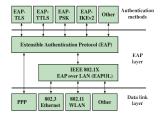


Figure 5.2 EAP Layered Context

- Framework for network access and authentication protocols.
- Mostly encountered in wireless networks and PPP-connections
- Extension to PPP

Figure: [1].

Authentication Methods

Extensible Authentication Protocol

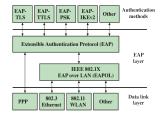


Figure 5.2 EAP Lavered Context

EAP authentication methods.

- EAP-TLS.
- EAP-TTLS
- EAP-GPSK.
- EAP-IKEv2.

Figure : [1].

Authentication Methods Extensible Authentication Protocol

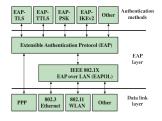


Figure 5.2 EAP Layered Context

EAP authentication methods.

- EAP-TLS.
- EAP-TTLS.
- EAP-GPSK.
- EAP-IKEv2.

Figure: [1].

Authentication Methods

Extensible Authentication Protocol

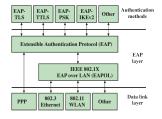


Figure 5.2 EAP Layered Context

EAP authentication methods.

- EAP-TLS.
- EAP-TTLS.
- EAP-GPSK.
- EAP-IKEv2.

Figure : [1].

Authentication Methods

Extensible Authentication Protocol

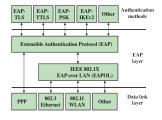


Figure 5.2 EAP Layered Context

EAP authentication methods.

- EAP-TLS.
- EAP-TTLS
- EAP-GPSK.
- EAP-IKEv2.

Figure : [1].

EAP Exchanges Extensible Authentication Protocol

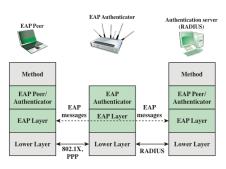


Figure : EAP Protocol Exchange [1]

EAP Messages Extensible Authentication Protocol

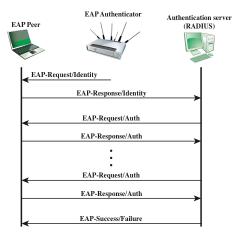


Figure : EAP Message Flow [1]

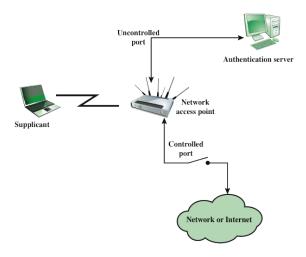


Figure: IEEE 802.1x operation [1]

IEEE 802.1x EAPOL Message types | IEEE 802.1x

- EAPOL-EAP Encapsulated EAP packet.
- EAPOL-Start Initiates the start of EAP authentication process
- EAPOL-Logoff Closes the EAP session.
- EAPOL-Key Exchange key information.

IEEE 802.1x EAPOL Message types | IEEE 802.1x

- EAPOL-EAP Encapsulated EAP packet.
- EAPOL-Start Initiates the start of EAP authentication process.
- EAPOL-Logoff Closes the EAP session.
- EAPOL-Key Exchange key information.

IEEE 802.1x EAPOL Message types

- EAPOL-EAP Encapsulated EAP packet.
- EAPOL-Start Initiates the start of EAP authentication process.
- EAPOL-Logoff Closes the EAP session.
- EAPOL-Key Exchange key information.

IEEE 802.1x EAPOL Message types

- EAPOL-EAP Encapsulated EAP packet.
- EAPOL-Start Initiates the start of EAP authentication process.
- EAPOL-Logoff Closes the EAP session.
- EAPOL-Key Exchange key information.

Overview

- - Network Access Control
 - Extensible Authentication Protocol
 - IEEE 802 1x
- Wireless Network Security
 - Wireless Security
- - 802.11 Wireless LAN
 - Wireless LAN Security

Wireless Security

Wireless Network Security

- Broadcast communication allows eavesdropping.
- Jamming traffic
- Mobile devices
- Implemented on a variety of devices with limited memory and
- Easy to access.

- Broadcast communication allows eavesdropping.
- Jamming traffic
- Mobile devices
- Implemented on a variety of devices with limited memory and
- Easy to access.

- Broadcast communication allows eavesdropping.
- Jamming traffic
- Mobile devices
- Implemented on a variety of devices with limited memory and computational resources.
- Easy to access.

- Broadcast communication allows eavesdropping.
- Jamming traffic
- Mobile devices
- Implemented on a variety of devices with limited memory and computational resources.
- Easy to access.

- Broadcast communication allows eavesdropping.
- Jamming traffic
- Mobile devices
- Implemented on a variety of devices with limited memory and computational resources.
- Easy to access.

Wireless Network Threats Wireless Security

Threats

- Accidental Association
- Malicious Association
- Ad hoc Networks
- Nontraditional Networks
- MAC Spoofing
- Man-in-the-middle attacks
- DoS
- Network Injection

Wireless Network Threats Wireless Security

Threats

- Accidental Association
- Malicious Association
- Ad hoc Networks
- Nontraditional Networks
- MAC Spoofing
- Man-in-the-middle attacks
- DoS
- Network Injection

Wireless Network Threats Wireless Security

Threats

- Accidental Association
- Malicious Association
- Ad hoc Networks
- Nontraditional Networks
- MAC Spoofing
- Man-in-the-middle attacks
- DoS
- Network Injection

Wireless Network Threats Wireless Security

Threats

- Accidental Association
- Malicious Association
- Ad hoc Networks
- Nontraditional Networks
- MAC Spoofing
- Man-in-the-middle attacks
- DoS
- Network Injection

Threats

- Accidental Association
- Malicious Association
- Ad hoc Networks
- Nontraditional Networks
- MAC Spoofing
- Man-in-the-middle attacks
- DoS
- Network Injection

Threats

- Accidental Association
- Malicious Association
- Ad hoc Networks
- Nontraditional Networks
- MAC Spoofing
- Man-in-the-middle attacks
- DoS
- Network Injection

Threats

- Accidental Association
- Malicious Association
- Ad hoc Networks
- Nontraditional Networks
- MAC Spoofing
- Man-in-the-middle attacks
- DoS
- Network Injection

Threats

- Accidental Association
- Malicious Association
- Ad hoc Networks
- Nontraditional Networks
- MAC Spoofing
- Man-in-the-middle attacks
- DoS
- Network Injection

Signal-hiding techniques

- Hide SSID (Security by obscurity)
- Reducing Signal Strength
- Encryption (Confidentiality)
- Authentication
- MAC (Integrity)
- IEEE 802.1x

- Signal-hiding techniques
 - Hide SSID (Security by obscurity)
 - Reducing Signal Strength
- Encryption (Confidentiality)
- Authentication
- MAC (Integrity)
- IEEE 802.1x

- Signal-hiding techniques
 - Hide SSID (Security by obscurity)
 - Reducing Signal Strength
- Encryption (Confidentiality)
- Authentication
- MAC (Integrity)
- IEEE 802.1x

- Signal-hiding techniques
 - Hide SSID (Security by obscurity)
 - Reducing Signal Strength
- Encryption (Confidentiality)
- MAC (Integrity)
- IEEE 802.1x

- Signal-hiding techniques
 - ► Hide SSID (Security by obscurity)
 - Reducing Signal Strength
- Encryption (Confidentiality)
- Authentication
- MAC (Integrity)
- IEEE 802.1x

- Signal-hiding techniques
 - ► Hide SSID (Security by obscurity)
 - Reducing Signal Strength
- Encryption (Confidentiality)
- Authentication
- MAC (Integrity)
- IEEE 802.1x

- Signal-hiding techniques
 - ► Hide SSID (Security by obscurity)
 - Reducing Signal Strength
- Encryption (Confidentiality)
- Authentication
- MAC (Integrity)
- IEEE 802.1x

Lack of physical Control

- Use of untrusted mobile devices
- Use of untrusted network
- Use of applications created by unknown parties
- Interaction with other systems
- Use of untrusted content
- Use of location services

- Lack of physical Control
- Use of untrusted mobile devices
- Use of untrusted network
- Use of applications created by unknown parties
- Interaction with other systems
- Use of untrusted content
- Use of location services

- Lack of physical Control
- Use of untrusted mobile devices.
- Use of untrusted network
- Use of applications created by unknown parties
- Interaction with other systems
- Use of untrusted content
- Use of location services

- Lack of physical Control
- Use of untrusted mobile devices
- Use of untrusted network
- Use of applications created by unknown parties
- Interaction with other systems
- Use of untrusted content
- Use of location services

- Lack of physical Control
- Use of untrusted mobile devices
- Use of untrusted network
- Use of applications created by unknown parties
- Interaction with other systems
- Use of untrusted content
- Use of location services

- Lack of physical Control
- Use of untrusted mobile devices.
- Use of untrusted network
- Use of applications created by unknown parties
- Interaction with other systems
- Use of untrusted content
- Use of location services

- Lack of physical Control
- Use of untrusted mobile devices.
- Use of untrusted network
- Use of applications created by unknown parties
- Interaction with other systems
- Use of untrusted content
- Use of location services

Overview

- - Network Access Control
 - Extensible Authentication Protocol
 - IEEE 802 1x
- - Wireless Security
- 802.11 Wireless Overview
 - 802.11 Wireless LAN
 - Wireless LAN Security

• IEEE 802 work group.

- Develops standards for LAN.
- ▶ 802.11 was formed 1990
- Wi-Fi Alliance
 - Wireless Ethernet Compatibility Alliance (WECA)
 - Certifies compatibility between Wi-Fi vendors
 - ▶ 802.11a,b,g,n
 - Creates security standards as well

- IEEE 802 work group.
 - Develops standards for LAN.
 - 802.11 was formed 1990
- Wi-Fi Alliance
 - Wireless Ethernet Compatibility Alliance (WECA)
 - Certifies compatibility between Wi-Fi vendors
 - ▶ 802.11a,b,g,n
 - Creates security standards as well

- IEEE 802 work group.
 - Develops standards for LAN.
 - ▶ 802.11 was formed 1990
- Wi-Fi Alliance
 - Wireless Ethernet Compatibility Alliance (WECA)
 - Certifies compatibility between Wi-Fi vendors
 - ▶ 802.11a,b,g,n
 - Creates security standards as well

- IEEE 802 work group.
 - Develops standards for LAN.
 - ▶ 802.11 was formed 1990

Wi-Fi Alliance

- Wireless Ethernet Compatibility Alliance (WECA)
- Certifies compatibility between Wi-Fi vendors.
- ► 802.11a,b,g,n
- Creates security standards as well.

- IEEE 802 work group.
 - Develops standards for LAN.
 - ▶ 802.11 was formed 1990

Wi-Fi Alliance

- Wireless Ethernet Compatibility Alliance (WECA)
- Certifies compatibility between Wi-Fi vendors.
- ► 802.11a,b,g,n
- Creates security standards as well.

- IEEE 802 work group.
 - Develops standards for LAN.
 - ▶ 802.11 was formed 1990

Wi-Fi Alliance

- Wireless Ethernet Compatibility Alliance (WECA)
- Certifies compatibility between Wi-Fi vendors.
- ► 802.11a,b,g,n
- Creates security standards as well.

- IEEE 802 work group.
 - Develops standards for LAN.
 - ▶ 802.11 was formed 1990

Wi-Fi Alliance

- Wireless Ethernet Compatibility Alliance (WECA)
- Certifies compatibility between Wi-Fi vendors.
- ► 802.11a,b,g,n
- Creates security standards as well.

- IEEE 802 work group.
 - Develops standards for LAN.
 - ▶ 802.11 was formed 1990

Wi-Fi Alliance

- Wireless Ethernet Compatibility Alliance (WECA)
- Certifies compatibility between Wi-Fi vendors.
- ► 802.11a,b,g,n
- Creates security standards as well.

- Access point
- Basic Service Set
- Extended Service Set
- Distribution System
- Protocol Data Unit
- Service Data Unit

- Access point
- Basic Service Set
- Extended Service Set
- Distribution System
- Protocol Data Unit
- Service Data Unit

- Access point
- Basic Service Set
- Extended Service Set
- Distribution System
- Protocol Data Unit
- Service Data Unit

- Access point
- Basic Service Set
- Extended Service Set
- Distribution System
- Protocol Data Unit
- Service Data Unit

- Access point
- Basic Service Set
- Extended Service Set
- Distribution System
- Protocol Data Unit
- Service Data Unit

- Access point
- Basic Service Set
- Extended Service Set
- Distribution System
- Protocol Data Unit
- Service Data Unit

IEEE 802.11 protocol stack

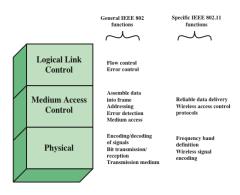


Figure: 802.11 protocol stack [1]

Table : IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

Table: IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

Table : IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

Table: IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

Table : IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

Table: IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

Table : IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

Table: IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

Table: IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

Table: IEEE 802.11 Services [1]

Service	Provider	Used to support
Association	Distribution system	MSDU delivery
Reassociation	Distribution system	MSDU delivery
Authentication	Station	LAN access and Security
Deauthentication	Station	LAN access and Security
Privacy	Station	LAN access and Security
Disassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery

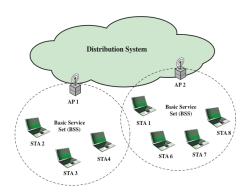


Figure: 802.11 Architectural Model [1]

Security Comparison – Wired vs. Wireless Wireless LAN Security

Wireless LAN

Any station within then range of a wireless AP can transmit and receive data on the LAN.

Wired LAN

Only devices with a physical connection to the network can send and receive data on the LAN.

Security Comparison – Wired vs. Wireless Wireless LAN Security

Wireless LAN

Any station within then range of a wireless AP can transmit and receive data on the LAN.

Wired LAN

Only devices with a physical connection to the network can send and receive data on the LAN.

IEEE 802.11i Wireless LAN Security

- Wired Equivalent Privacy (WEP)
- Wi-Fi Protected Access (WPA)

IEEE 802.11i Wireless LAN Security

- Wired Equivalent Privacy (WEP)
- Wi-Fi Protected Access (WPA)

WEP Wireless LAN Security

• Use RC4 stream cipher.

- 128 bit random number used as a challange.
- 64 bit (40 bit user generated) or 128 bit (104 bit user generated) key sizes.
- 24 bit initialization vector

WEP Wireless LAN Security

- Use RC4 stream cipher.
- 128 bit random number used as a challange.
- 64 bit (40 bit user generated) or 128 bit (104 bit user generated) key sizes.
- 24 bit initialization vector

WFP Wireless LAN Security

- Use RC4 stream cipher.
- 128 bit random number used as a challange.
- 64 bit (40 bit user generated) or 128 bit (104 bit user generated) key sizes
- 24 bit initialization vector

WEP Wireless LAN Security

- Use RC4 stream cipher.
- 128 bit random number used as a challange.
- 64 bit (40 bit user generated) or 128 bit (104 bit user generated) key sizes.
- 24 bit initialization vector

WEP Authentication Process
Wireless LAN Security

WEP Encryption process Wireless LAN Security

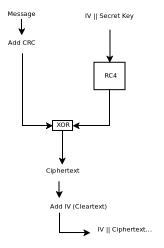


Figure : WEP encryption process

- Replace WEP
- 802.11i Robust Security Network
- RSN services
 - Authentication
 - Access Control
 - Privacy with message integrity

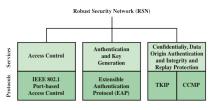
- Replace WEP
- 802.11i Robust Security Network
- RSN services
 - Authentication
 - Access Control
 - Privacy with message integrity

- Replace WEP
- 802.11i Robust Security Network
- RSN services
 - Authentication
 - Access Control
 - Privacy with message integrity

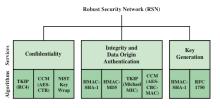
- RSN services
 - Authentication

 - Privacy with message integrity

- Replace WEP
- 802.11i Robust Security Network
- RSN services
 - Authentication
 - Access Control
 - Privacy with message integrity

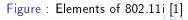


- RSN services


 - Privacy with message integrity

WPA Wireless LAN Security

(a) Services and Protocols



(b) Cryptographic Algorithms

CBC-MAC = Cipher Block Block Chaining Message Authentication Code (MAC)
CCM = Counter Mode with Cipher Block Chaining Message Authentication Code

CCMP = Counter Mode with Cipher Block Chaining MAC Protocol

TKIP = Temporal Key Integrity Protocol

WPA Wireless LAN Security

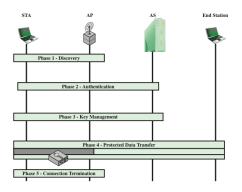


Figure: 802.11i Phases of operation [1]

802.11i - Discovery/Authentication phase Wireless LAN Security

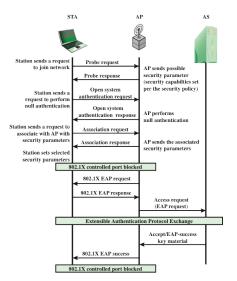


Figure : Discovery, authentication and association [1]

802.11i - Key Hierarchies Wireless LAN Security

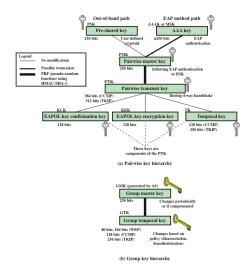


Figure : Key Hierarchies [1]

Keys used in Wi-Fi Protected Access Wireless LAN Security

- Pairwise Keys
 - Used for communication between a pair of devices.
- Pre-Shared Key
 - A secret key installed outside the scope of 802.11i
- Master Session Key
 - Master key generated using IEEE 802.1x EAPOL
- Pairwise Master Key
 - Derived from MSK or PSK
- Pairwise Transient Key
 - Consists of three keys:
 - Key Confirmation Key (KCK)
 - Key Encryption Key (KEK)
 - Temporal Key (TK)

Group Keys Wireless LAN Security

- Used for multicast communication
- Two keys are used
 - Group Master Key Used to generate Group Temporal Key
 - Group Temporal Key Used to encrypt the MPDUs
 - Changed every time a devices leaves the group.

IEEE 802.11i Four-way Handshake Wireless LAN Security

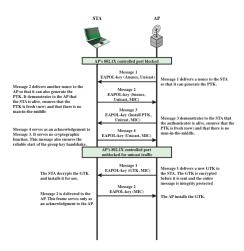


Figure: Four-way handshake and Group Key Handshake [1]

Protected Data Transfer Wireless LAN Security

- TKIP (Temporal Key Integrity Protocol)
 - Software backward compatible with WEP devices
 - Message integrity using a MAC (Michael)
 - Encrypts data using RC4.
- CCMP (Counter Mode-CBC MAC Protocol)
 - Use CBC-MAC for message integrity
 - Encrypts data using AES-CTR.

IEEE 802.11i PRF Wireless LAN Security

- Used for amongst other things generating nonces.
- Built on the HMAC-SHA1 hash algorithm.

IEEE 802.11i PRF Wireless LAN Security

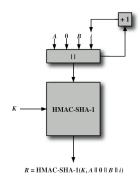


Figure 7.11 IEEE 802.11i Pseudorandom Function

Referenser

[1] William Stallings. *Network security essentials : applications and standards*. 5th ed. International Edition. Pearson Education, 2013. ISBN: 978-0-273-79336-6.

